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Abstract

It is a frequentproblemin network designto find a subgraphof a graphwith mini-
mumcostthatsatisfiescertainconnectiity requirementsWe give areview of thedifferent
classe®f the problemandthe bestknown approximatioralgorithms.

1 Introduction

An importantproblemin network designis to designnetworks that are resilientto failures.
Supposewve aregivena graphG = (V, E), whereeachedgee is associatedvith a costc(e).
Thegoalis to find aspanningsubgraphG’ of G thatsatisfiescertainconnectvity requirements,
atminimum costof the edgesused.Sucha possiblerequirements thatthesubgraphG’ should
be k£ edge-connectedr £ node-connectedA graphis & edge-connected if the deletionof ary
k — 1 edgedeavesit connectedA graphis k£ node-connected, if it hasatleastk + 1 nodesand
thedeletionof ary k£ — 1 nodedeavesit connectedSoa k edge-connectedetwork continues
to allow communicatiorbetweerfunctioningsitesevenafterasmary ask — 1 links failed.
Unfortunatelyboththe minimumweight . edge-connectesubgraptproblemandthe min-
imum weightk node-connectedubgraphproblemsareNP-complete Onepossibleway to get
“good” feasiblesolutionto an NP-completeproblemis to useapproximationalgorithms. An
a-approximation algorithm is a polynomialalgorithmthat always producesa solutionwhose
valueis atmosta timesthe optimumvalue.
The paperorganizedasfollows: in section2 and3 we investigatehe minimumweightk edge-
connectedsubgraphproblemand the minimum weight £ node-connectedubgraphproblem.
In section4 a generalizatiorof the minimum weight & edge-connectedubgraphproblemis
considered.

2 Edge-connectivity problems

Let G = (V, E) beanundirectedgraphandfor everye € E let c(e) > 0 be anonngatve
weight. Considerthe problemof finding a minimum weight spanningsubgraphd = (V, Ey)
thatis k£ edge-connectedKhuller and Vishkin [?] gave a methodthat yields a 2 factor ap-
proximationalgorithmfor this problem. Their algorithmrunsasfollows: replaceeachedge
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e = (u,v) with two directededges(u, v) and (v, u) with eachedgehaving weightc(e). Call

this graphG?. Thenchooseanarbitraryvertex r of GP andfind a minimumweightsubgraph
HP of GP that containsk edge-disjointpathsfrom r to every othervertex of GP. As it was
shavnin [?] thissubgrapltanbefoundin polynomialtime. If atleastoneof thedirectededges
(u,v) or (v,u) is pickedin H? , thenadd(u, v) to Ey.

Lemmal Thegraph H = (V, Ey) is k edge-connected.

Proof: Supposéhatwe canremove from H k — 1 edgessuchthatthe remaininggraphis
not connected.Thenthereexists a vertex v thatis in a differentcomponenthanr. It is clear
thatr cannothave k edge-disjoinpathsto v in GP. Thus, H is k edge-connected. [

Theorem 1 Theweight of E'y; isat most twice the weight of the optimal solution.

Proof: Let G,,; beanoptimalsolutionto the minimumweightk edge-connecteproblem.
Considerall theanti-paralleledgescorrespondingo edgesn G,,;. We getadirectedsubgraph
in GP with weight2¢(G,,:). Thissubgraplalsohasthepropertythatit containst edge-disjoint
pathsfrom r to ary vertex v. As the algorithmfoundthe minimumweightsubgraptsatisfying
this propertyit followsthatc(Eg) < 2¢(Gopt)- ]

If all the weightsareequalto onethentherearebetterapproximationalgorithms. For this
caseCheriyanand Thurimella[?] presentedan algorithm that achieves a performanceratio
2+42/(k+1).

3 Vertex connectivity problems

Let G = (V, E) beanundirectedgraphandfor everye € E let c(e) > 0 be anonngatve
weight. Considerthe problemof finding a minimumweightspanningsubgraphd = (V, Ey)

thatis £ node-connected-or theunweightedcasethe bestknown algorithmis dueto Cheriyan
andThurimella[?]: their algorithmachie/esa performanceatio of 1 + 1/k. For the general
problemno constantfactorapproximationalgorithmsare known. The bestknown algorithm
is the algorithm of Ravi andWilliamson [?] that achievesa factorof 2H (k) where H (k) =

1+1/2+...,1/k. For the caseof finding a 2 vertex-connectedyraphwith minimumweight
an approximationalgorithmachieving ratio 2 + 1/n wasgiven by Khuller and Raghaachari
[?]. Theiralgorithmusessimilar techniqueto the oneusedin the previoussection.Theideais

asfollows: Createa new directedgraphG” asfollows: replaceeachedgee = (u, v) with two

directededgequ, v) and(v, u) with eachedgehaving weightc(e). Lete = (z, y) bethelowest
edgein G. Add anew vertex r to GP andthedirectededgeqr, z) and(r, y) of weightOto G”.

Let HP beasubgraphn GP with minimumweightthatcontains2 vertex-disjoint pathsfrom r

to eachvertex v in GP. FrankandTardos[?] shavedthat H? canbefoundin polynomialtime.

If atleastoneof the directededges(u, v) or (v, u) is pickedin HP , thenadd (u, v) to Ey. It

canbeeasilyshavn thatthegraphH = (V, Ey U {e}) is 2 node-connected.

Theorem 2 Theweight of E; U {e} isat most (2 + 1) times the optimal solution.

Proof: Let G,,; be a minimum weight 2 vertex-connectedsubgraphof . Considerthe anti-
paralleledgescorrespondindo edgesin G,,;. We geta directedsubgraphin G with weight
2¢(Gopt). Fromz andy thereare?2 vertex-disjoint directedpathsto every vertex v andsothere



are2 vertex-disjoint directedpathsfrom r to every othervertex v. Sincethealgorithmof Frank
andTardosfindsthe minimumweightsubgraptof GP having 2 vertex-disjoint pathsfrom r to
everyvertex v we getthate(Ey) < 2¢(G,pe). Sinceevery 2 vertex-connecte@raphhasatleast
n edgestheminimumweightedgeof G is atmost=c(Gop). Soc(Ex U {e}) < 2+ 2. »

4 Generalized Steiner-problem

We aregivenagraphwith non-ngyatve weightfunctionc : E — Q. ontheedgesWe arealso
givenafunction f : 2¥ — N. Findaminimumweightsetof edgesEt’ C E suchthatfor every
subsetS C V atleastf(S) edgesof E’' have exactly oneendpointin S.This problemcanbe
formulatedasanintegerproblem:

min Z Cele

eckE
z(6(S)) > f(S) foreachS C V, (1)
z. € {0,1} for eache € E.

A specialcaseof this problemis thesocalledgeneralize®teinemproblem:find aminimum
weightsubgraplof G thatfor every pair of nodesy andw containsatleastr(v, w) edge-disjoint
pathsfrom v to w. If » = k, thanthe problemreducego the minimumweightk edge-connected
subgraptproblem.

A function f : 2 — {0, 1} is calleduncrossableif f(V) = 0 andif f(A4) = f(B) = 1 for ary
two setsA andB, theneitherf(AU B) = f(ANnB)=1or f(A—B) = f(B— A) =1.

A function f : 2V — N is calledweakly supermodular if f(V') = 0 andfor ary two setsA and
B wehave

F(A) + f(B) < max{f(A— B) + f(B — A), f(AUB) + f(AN B)}.

For uncrossabléunctions f Williamson[?] etal. give afactor2 approximatioralgorithm.
Thealgorithmuseghe primal-dualmethodfor approximatioralgorithms.Thedualof thelinear
programmingelaxationof (1) is:

max »_ h(S)y(S)

> y(S) < c(e) foreache € E (2)
S:e€d(S)
y(S) > 0 foreachS C V.

Algorithm Uncrossabléegins with the infeasibleprimal solution F = () andthe feasible
dualsolutionys = 0 for all S. As long asthereexists a violatedset(thatis a setS suchthat
h(S) = 1 anddor(S) = 0), thealgorithmiteratively performsa primal-dualimprovementstep.
In eachiteration,the algorithmfirst identifiesthe minimal (with respecto inclusion)violated
setsfor F'; we will call thesesetsactive. Thenthe algorithmincreaseshe value of the dual
solutionby uniformly raisingthe variablesys correspondindo the active setsuntil someedge
e becomedight, i.e. ,c(e) = Yg.ccs5)¥(S). Edgee is thenaddedto F. When I becomes
feasible thealgorithmexecutesanedge-deletiorstage eliminatingunnecessargdgesrom F.
We denotethe resultingsetof edgesby F’. Sinceat the end of the algorithmy is a feasible
dual solution, the following theoremimplies that algorithmuncrossables a 2-approximation
algorithm.



Theorem 3 If F’ and y are the set of edges and the dual variables, respectively, returned by
the algorithm, then 3" c(e) < 235 y(S). ]

Williamson et al. [?] provided a 2H ( f,,....)-approximationalgorithm for the casewhen
the function f is weakly supermodular We call this algorithm weakly supermodular The
algorithmworksin phasesandensureshatafterphasep we have asetof edgesF,, thatsatisfies
fp(S) = f(S) = fmaz + p- Henceafter f,,.. phaseshesetof edgesry, .. is afeasiblesolution
to theproblem.To augmenthesetof edgesF,_; to F;, wehaveto addleastoneedgeto eachcut
§(S) for which |6, _, (S)| < fp(S). Lethy(S) = maz{ f,(S) — |6r,_, (S), 0. It canbeprooved
thatthe function / is uncrossable So augmentingF,,, to ¥, we have to solve the IP program
with function h,,. To solve this we caninvoke the algorithmuncrossablelefinedabove. Thus
thealgorithmconsistf f,,.. invocationof the Uncrossablalgorithm.

Theorem 4 The algorithm weakly supermodular is a 2H ( f..) @pproximation algorithm for
any weakly supermodular function f, where H(fiae) =1+ 1/2+ ... 4+ 1/ frnaz- n

4.1 A 2-approximation algorithm

RecentlyJain[?] presented 2-approximatioralgorithmfor the problem(1) with weakly su-
permodulafunctions.Therelaxationof the problemis:

min Z Cele

eck
z(6(S)) > f(S) foreachS C 'V, (3)
0 <z, <1foreache € E.

We assumehatwe aregivenanoraclethatdecidesrom a vectorz whetherz is afeasible
solutionof (3) or it findsa constrainthatis not satisfied.The algorithmworks asfollows:
1. Solve the(3) LP programoptimally (this canbe doneby the ellipsoid method).
2. Make anoptimal extremepoint solutionfrom anoptimalsolution.
3. Fix thoseedgedo 1 thathave valueatleast1/2 in the optimalextremepoint solution.
4. Deletetheseedgesandsolve theremainingproblemiteratively.

Theorem 5 (Jain) In any extreme point solution of problem (3) thereis at least one edge with
ze > 1/2. ]

Accordingto thistheoremafterat most|E| iterationwe geta feasiblesolutionof (3).
Let X* beanextremepointsolutionof problem(3) andletE%+ betheedgeswith X*(e) > 1/2.
LetG,s = G — E%+. After fixing the valuesof the edgesof E%+ to 1 we have to solve the
following modifiedproblem:

min Z CeXe

e€E(Gres)
2(6,.,(S)) > f(S)— Y. 1foreachS cV, (4)

6EE%+05(;(5)

0 <z, <1foreache € E(Gyes).

Thefunctionin problem(4) is weakly supermodulasowe cando theiterationagain.



Theorem 6 Let z* and z* . bethe optimal values of (3) and (4) respectively. If E,.., isasolution

TES

of problem (4) with weight at most 2z, then E,..; U E% . isafeasible solution of (3)with weight

res

at most 2z*. n

Thetheoremshaws thatthefinal solutionis at mosttwice the optimumso the algorithmis
a2-approximation.
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