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Abstract

In this paper the generalization of the separability property ofih& seminorm is given for the
boundary of convex polyhedral domains. Using this propertyAthé& seminorm on the surfaces of
three-dimensional bounded domains can be represented as a simple circulant sparse matrix, which
contains onlyO (N log(N)) nonzero entries, whe® denotes the number of unknowns.

1 Introduction

LetQ € R3 a given bounded domain. The separability property offiHé? seminorm on the boundary
002 means that it is spectrally equivalent to the sum of the ’partial’ seminorms corresponding to the
directionsz,y andz, that is

Cl' | f |12£[1/2(3Q)§ Z | f |§1;/2(BQ)S 02' | f |?’{1/2(39)
pe{x7y7’z}

where(C; andCs are positive constants independenffof

This property was proved at first in the case of hypercubes (cf. Lemma 53irof [5]). A
different proof for general rectangular domains and its discrete counterpart in the space of bilinear finite
elements have been given ir]. The generalization of the property to triangular domains and its discrete
equivalent in the space of linear finite elements have been discusseq.in [

The purpose of this paper is to give the generlization of this property to a wide class of convex
polyhedral domains. The proof is based on a special covering of the convex domains and the application
of the separability property on convex poligonal domains provedih [

The matrix representations of tti&!/2 seminorm are efficient preconditioners for elliptic problems
and boundary integral equations of first kind. Numerous papers are devoted to this topic, see for example
[1,3,4,5,6,7,8,13, 16].

By the use of the separability property, tiE'/2 seminorm can be represented as a sum of one-
dimensional seminorms in finite element spaces. HencéftHé seminorm on the surfaces of three-
dimensional bounded domains can be represented as a simple sparse circulant matrix, which contains
only O(N log(N)) nonzero entries, wher® denotes the number of unknowns. The construction of
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this matrix representation and its application as a Schur complement preconditioner in the case of brick
shaped and tetrahedral domains are discussedjfiapd [L1], respectively. The presented generalization

of the separabiliy property of th&#'/2 seminorm allows to generalize this preconditioner construction

to the boundary of a wide class of convex polyhedral domains.

2 The Separability Property

Let 912 denote the boundary of a given bounded convex polyhedron shaped domain. Define the 'main’
directional unit vectors

v =(1,0,0", vy =(0,1,00",  v3=(0,0,1)",
Yy = (_LOvO)Tv Vs = (07 _170)T7 Vg = (O>O> _1)T>

which are parallel to the coordinate axes and the 'supplementary’ directional unit vectors

vw:(_%’_%ﬂ) N (\1[,0, \% ; 2122(,—%,—% ,
Qlﬁ:(_%’%’o) ’ 917:(_%’0’%) , 218:(07_%7%) :

Figure 1

Assume thaf is not transparent and 16€2; denote that set of points oK) which are visible from
the directionv,;. So we get the covering

o0 = U800, 1)

of 0Q2.

For the sake of simplicity of the notations, some index sets are introduced. These sets are given in
chart form and reviewed now.

The index sef contains the indices of the unit vectarsdefined above.

I =i|[1]2[3]4[5|6[7|8[9]10[11]12]13[14[15]16]17[18] )

We introduce local coordinate systems on the $#ts (i € I) determined by the basis vectors
v;, v, V- Lo dENotes the set of the indices of these basis vectors.

7)|1|2|3|4|5/6] 7| 8| 9|10/11|12]|13|14|15|16|17|18
Iioe =171|2|112)2{211] 3| 2| 1| 3| 2| 1| 3] 2| 1] 3| 2| 1 3
k|3]3|2]3|3|2(13|14|15|13|14|15| 7| 8] 9| 7| 8| 9

The elements of , are the indices of these vectarswhich are perpendicular to the axis(See
Figure 2.). I;,.,, contains the indices of the basis vectors belonging to the local coordinate systems
introduced on the set¥?; (i € 1)), where the componenjsandk are ordered so that; is the direction
of the axisz. The setd,, I;,., andl, I, . are defined analogously.
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Figure 2.

)
w
—_
0]

12/6]15
111 1
1512| 9

—
| O
—
—

I, =|i]|2]9[3[18]5[12[6[15

s Iloc,m = .7

™
w
—
(@)
[\

I, =[i[|1[8]3[17]4[11]6[14], Tiocy = 42| 2|2] 2[2] 22| 2
14[1] 8

)
1
3
7||1] 8(3|17]4/11]|6{14
2
3

i||1] 7]2|16]4|10(5|13
s Tioe. =1 7|13] 3(3] 3|3| 3(3| 3
k||2/113|1] 7|2|13|1| 7

I, =|i[1]7]2[16[4]10[5]13

(4)

®)

(6)

The set9(); (i € I,,) give a covering ob$2 around the axig (p € {z,y, z}). The index set$,cpo 2
Inepoy and Iep, . are used to make the redundant’ partial seminorms ‘disappear’. These index sets
contain the indices of the 'supplementary’ directions and their left and right neighbours belonging to the
covering ofo2 around the coordinate axes. The elements,gf, , (p € {, v, z}), thatis the indices of
the leftv; and the right;, neighbour of the 'supplementary’ directief can be read easily from Figure

2.
il[9[18[12[15 il[8[17[11[14 i[[7[16]10[13
Inevow = |1]2] 3] 5] 6L Loy =[1]1] 3] 4] 6, ILneo. =[1]1] 2 4] 5
73] 5 6] 2 3] 4] 6] 1 rl[2] 4] 5] 1

()

The proof of the separability theorem needs projections. We introduce and investigate these projec-

tions in next.

Let us write the points 0f$2; (i € I) in the local coordinate system), v;, v, determined by the

indices(i, j, k) € Ij,. into the form
z = av; + Bu; + v, Vo € 0,
and define the projections : 0Q; — R?,
Pi(z) = (8,7)", Va e 0.
Introduce the image sets

P(0%) = {P(x) € R |z €O}, (ic]),

P09 N 0%) = { Pi(x) € R? |z € 090 N o },

and
P00 09,) = {P(2) € R? | 2 € 02,009 |,

(1, 1,7) € Inebow U Ineboy U Inebo, @and their normal domain forms

Pi(09) = {(8,7)7 € R? | B, < 8 < By andpy(8) < < 34(8) } =

C)

9)

(10)

(11)

(12)

(13)



Submitted to HEJ. Manuscript no.: ANM-010227-A 4

={(B.)" € B |7, <7 < dg anddy(y) < B < (1)},
where we used the notation
8Qq: o N ifg=1,1 .
o N ifg=1i,r

The proof of the three-dimensional separability property is based on the application of its two-
dimensional counterpari.f]. For the application of this two-dimensional counterpart we must assume
that the setd>;(0€,) satisfy the condition

Al @g(Br) < 4q(B2),  VB1, B2 € [Bg, By, (14)

or
A2 : @Lq(’Vl) < &q('ﬁ)a V1,72 € ['quaﬁ/q]- (15)

The properties of the set®; and the projectiond”; used subsequently are summarized into the
following lemma.

Lemma 2.1 The set$; (i € I) can be written into the form

09 = {a(B, v + Bo; +v, | (8,7) € P(0) } (16)

and hence the projectiond are invertible.
The coordinatex as a function of the coordinatgsand~ is piecewise continuously differentiable,
and there exists positive constarit such that

Il Va(B,7) [ll< €1 (17)

for almost every(3,v) € P;(05);), where

Oa
Il Va(B,7) llI= max | 52

oo
b2+ |c]2=1, beeR aﬁ(ﬁ”) + 67(5’7) c|

Proof: The first statement of the lemma is a straightforward consequence of the definitions of the sets
092; and the projection®;.

Since(2 is a polyhedron-shaped domain, the functiai, ) is piecewise linear. Hence(3,v) is
piecewise continuously differentiable and the second statement of the lemma holds. [

The formulation of the three-dimensional separability property needs the introduction of the follow-
ing seminorms on the set$) € {99, 99, }:

The H'/2 seminorm is defined in the usual way by the formula

2 — 2
5 i [, [ PP astasto) a9

wheres(-) is the area o2 and

|z —yll = ((m —y1)* + (w2 — y2)* + (w3 — y3)2)1/2

denotes the three-dimensional euclidean distance.

The ’'partial’ seminorm belonging to the directiaris defined by the expression

| £ Bz oy = (19)



Submitted to HEJ. Manuscript no.: ANM-010227-A 5

Tmazx ‘ x , Y1, Zl) f(:[;’ Y2, 22) ‘2
ds y % ds , 2 dzx,
/xmm /89 /89 —y2)2 + (21 — 22)2 | (Y2, 22)dsa(y1, 21)

where
Toin = min T, Tmee = Max T,
(#,§,%)T €00 (%,§,%)T €00
a@x:{(:i,g,z)TeaQ | :E:x}

ands,(.) is the arclength 0B,
The seminorms belonging to the directignandz are defined analogously by the formulas

| F a2 00y~ (20)

Ymaz x1,Y,2 - x2,Y, % 2
/ / / Sy, 21) = J(@2,9,20) | dsy (w2, 22)dsy(z1, 21)dy,
min JOQ, Jog, |

(z1 = 22)? + (21 — 22)? |

and
| f |§,;/2(3Q): (21)

Zmax | xl yl, f($2’y2’ ) |
ds.(x2,y2)ds. (x1,y1)dz.
/zmm /Em /89 (1 — x2) +(y1—y2)2| (2, y2)ds:(z1,41)

The three-dimensional separability property can be formulated as follows:

Theorem 2.2 Let 2 be a bounded convex polyhedron-shaped domain. Assume thaPgagh,) de-
fined previously satisfies the conditidri or A2 and there exist positive constarits; and Cs, indepen-
dent off, such that

021' ‘ f ﬁ-jl/z (8Q)= Z | f |H1/2 (69 )< 022 ‘ f ‘H1/2 (69) (22)
el

forall f € HY/?(0%),

Co1- ’ / ’ 1/2(852 = Z ‘ f ‘ 1/2 (992) < Cao- | / |i¢/2(89) (23)

1€l

forall f € H;/2(BQ) andp € {x,y, z}.
Then there exist positive constaidtg; and Cy4 independent of such that

C'23' ’ f ’%]1/2(39)§ Z ’ f ’iIé”(amS C(24' | f |§[1/2(3Q) (24)
pefz,y,z}

forall f € HY/2(09).

Due to the condition of the theorem concerning the coveririgf bfhe proof of the equivalence of the
seminormH '/2(9Q) and the partial’ seminormH;/Q(afz) (p € {z,y, z}) can be reduced to the proof
of the equivalence of th&'/2(99);) seminorm and the "partial’ seminorm}Sj/Q(E)Qi) (pe{z,y,z2}).

Define the seminorms

’ f |§-[1/2(p.(89q)): (25)

ﬂm)) f(P, _1(52,72)) &
/P(aQ /P(aQq " B2+ (71— 70)2 |2 dry2dBadryd 3,
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and
| f ’iﬂ”(a(eﬂq)): 29
B | F(PTHB,m)) — F(PTH(B, 7)) 1P
i dyapdyndp,
/;, /¢q<ﬂ) /wq(ﬁ) |7 =2 ? i
| f @1/.2(3(39(1)): @0
ban) e | F(PTY(BL, 7)) — FPTH (B ) |2
/ /qw)/ | 61— B2 |2 iy
on the set$;(09,).

By the use of the next lemma the proof of the equivalence ofHRE (9€);) seminorm and the
‘partial seminormng/z(aﬁ-) (p € {z,y,z}) can be simplified to the proof of the equivalence of the
just intruducedH '/2(P;(9€);)) seminorm and ’partial’ semlnornHI/Q( P;(05)) andH1/2( P;(05Y)).

Lemma 2.3 Under the hypotheses of the theorem there exist positive conétarasd C's; independent
of f, such that

IA

C131' ‘ f ‘%{1/2((%21.) | f |%11/Q(Pi(89i)) S C(32' | f @11/2(891.) (28)

forall 7 € I,
C’31' ‘ f ‘?{1/2(39(}) < |f |i]1/2(pi(3gq)) < C’32' ‘ f ‘?{1/2(35)(1) (29)
forall (i,1,7) € Lnepoz U Ineboy U Inebo,-» Whereg € {(i,1), (¢,7)}, and

Csi- | f \fq;/z Cso- | f |§{;/2 (30)

2
(0) < |f |H;,§2(Pi(agi)) < (09)
forall i € I, €s(i, j, k) € Ljocp andp € {x,y, 2}.

Proof: We prove only the first equivalence, the others can be verified analogously.

Let us consider the equivalent form

~(BLn) = (PN (B2 2)) P .
s Ty TGy~ P s o G s )

of | f \Hl/z 9:) , Where
1P (B1,m) — P (Bas )12 = (a(Br,m1) — a(Be,12))2 + (B — B2)% + (v — )2
and s
2 a 2
as(P (G ) = (1 +(53) @+ (5) mm) dwdf, (1=1,2).

According to Lemma 2.1 there holds$ Va/(5;,v) |||< C; for almost every(5;,v;) € P;(€;), and
thus the previous two terms can be estimated as

((51 — B2)* 4 (11 — 71)2> <

<|I1P7H (B, m) — PRy )| <



Submitted to HEJ. Manuscript no.: ANM-010227-A 7

<(A+CH((B1 - B)* + (1 —m)?)
and
ldydfBy < ds(P7H(B,v) < (1+2- C%)”dedﬂl.

So the statement of the lemma holds with the chéige= andCsy = (1+C?)32. =

(1+2 (14+2:C%)

Since the two-dimensional sef$(0f),) satisfy the conditionAl or A2, we can apply the two-
dimensional separability theoremZ], and we get the following equivalence between the seminorms
defined on the setB;(05),):

Lemma 2.4 Under the hypotheses of the theorem there exist positive conétarasd C,y5 independent
of f such that

C41 ‘f ‘H1/2 ACN )_’ f’ 1/2( Pi(09)) + ’ f ’ilim Pi(092:)) = C42 ‘f ‘H1/2 ;) (31)
forall i € I &s(i,j, k) € I;,., moreover
C41 ‘ f ‘H1/2 5 (094) _‘ f ‘2 1/2( Pi(89)) + ’ f ’il,if(Pi(BQq))S C42' ‘ f ‘?{1/2(132.(6%)) (32)
forall (i,1,7) € Ineboz U Ineboy U Inebo,- @aNd (1, 7, k) € Ijoc, Whereq € {(4,1), (i,7)}.

The next lemma serves for the 'disappearing’ of the 'redundant’ partial seminorms.

Lemma 2.5 Under the hypotheses of the theorem there exists a positive congtamiependent of
such that

2
| F P oy < (33)

2 2 2 2
forall (i,1,r) € Inebom, (Z,j, k), (I,m,n),(r,s,t) € Ljpcp, andp € {:c,y, z}.
Proof: The definition of the set¥?, implies that
0Q; C (09 N oY) U (09 N OQ,) .

Hence
P;(09;) C P,(0Q; N OSY) U Py(09; NN,
and so
2 2 B
1 |H;1]/-2(Pi(am))§| ! |Hi§2(P¢(anaQ + 11 12 (ponnonny)— 1T I

Apply Lemma 2.3 and Lemma 2.4 to the thefimto obtain

2 2
Il S C42‘ ’ f ’H1/2(Pi(39iﬂagz))§ C32 . C42' ’ f ’Hl/Q(aﬂmaﬂl)S

Cs2 - Cyz
< Cs2- Caz | f [ip/290,) < “Cn | e pan)) <

< = "=
— 031 . 041 ‘ f ‘ 1/2

The therml, can be estimated analogously:

032 Cao ( 9 )
I
2= C3 - Cuyy |f|H§{2< Hf‘ H,[?(Pr(09))

2
y I |Hi£3<Pz<aﬂz>>>
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_ C32-Cao
C31-Ca1"

Proof of Theorem 2.2: During the proof of the theordihdenote positive constants independent of

Hence the lemma holds with the choi€e = |

Due to the covering condition of the theorem it is enough to prove the equivalence

Dll : Z ’ f ’?{1/2(8Qi)§ Z (Z | f |2 1/2 69 ) S D12 : Z ‘ f ‘?{1/2(391.) .

i€l pe{x,y,z} \1€] iel
Applying Lemma 2.3 this can be reduced to proof of the equivalence

D21 Z | f |H1/2 BQ ))_

el

< Z (( Z |f|21/2 dQ))) <

pe{x Y, Z} ivj k)elloc p

<D22 Z|f|H1/2 dQ ))
el

Using Lemma 2.3 our proof can be simplified to verify the equivalence

2 2
D X (17 Bnony 1 Bprrimony) <

(i’j’k)elloc

< > (( > ’f’l/z BQ)))<

PG{%%Z} i:jzk)ellocp

2 2
<Dgp- ) <‘ ! ‘H%Q(Pi(a(zi)) +1f |H,1J/.2(Pi(am))> '

(i7j7k)e'[loc
Taking into account the identity

2 2 _
2 (’f’H;f(Pi(am)) Hf’H;f(Pi(am))) B

(i7j7k)elloc
SOl R T
pe{z,y,z} ((i,j,k)EIloc,p i (Fi(662:))

2
+ Z ((“T) Z |f|H,1J/2(PL-(8Q¢)))

pe{x:y’z} eInebo,p»(ivjvk)EIloc,p

and the definitions of;,. , and I, p, the previous equivalence follows from the estimation

2
> ((m) > ’f’H’if/'z(Pi(aﬂi)))S

PG{%%Z} EInebo,pv(i,jzk)elloc,p

2 2
<Cs- Z (( Z ( f ‘H;{,%(B(aﬂl)) +1f |H3143(Pz(891))>) +

pE{x,y,z} i:lvr)elnebo,pv(lvmvn)elloc,p

+C5- Y

PG{%ZJ»Z} ((ialvr)elnebo,p7(T757t)€Iloc,p

(17 B m>+”’me»D§
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<2.Cs- Z ( Z | f |§11/2(Pv(8§2v))) )
]k k3 K2

PG{JC,%Z} (ivjvk)elloc,p

where we have applied Lemma 2.5.
The proof is complete. [

Remark 2.6 The brick shaped domains satisfy the conditions of Theorem 2.2. For example in the case
of the unit cube the set¥?; (i € I) are the following:

aQZ:QM (221776)7

07 =Q1UQ2, 0 =Q1UQ3, I =0Q2UQs3,
0o =Q1UQ5, 91 =Q1UQs, 092 = Q5 U Qs,
O3 =Q1UQs, 001y =Q1UQs, 95 = Q2 U Qs,
0 = Q1UQ2, 07 =Q1UQ3, 0= Q5UQx,

where); denote the faces

Qr={0} x[0,1] x [0,1], Q2=1[0,1] x {0} x [0,1], Q5 =[0,1] x [0,1] x {0},
Qs ={1} x[0,1] x [0,1}, Q5 =1[0,1] x {1} x [0,1], Q6 =1[0,1] x [0,1] x {1}

of the unit cube.

Theorem 2.2. can be applied only to a quite narrow class of polyhedrons. However the following
generalization allows to prove the separability property for a much wider class.

Theorem 2.7 Let (2 be a bounded convex polyhedron-shaped domain. Assume that to the 'main’ direc-
tionsv; (i = 1,...,6) there can be given such 'supplementary’ directions

v, = it - v+ ir - () \V/(Z, [ 7") € Inebo,a: U Inebo,y U Inebo,za (34)

where; ;, A > 0, /\?J + )\22’," = 1, that the suitable chosen se®§); C 9%; (i € I) satisfy the
conditions 3 3 3
@Qz - 6Ql U GQT, V(Z> la 7") € Inebo,:c U Inebo,y U Inebo,za (35)

and for the sets”; (992, the conditionA1 or A2 hold. Moreover assume that there exist positive con-
stantsC7; and C7, independent of such that

071' | f |§{1/2(8Q)§ Z | f |12L11/2(39i)§ 072' ‘ f ‘?{1/2(3(2) (36)
el

forall f € H'/2(9Q) and

071' ’ f IQH;/Q(aﬂ)S Z ‘ f ‘?‘[;/2(8Q1)§ 072. ’ f ’ilg/?(aﬂ) (37)

i€,

forall f € H,W(@Q) andp € {x,y, z}.
Then there exist positive constaidts; and Cr4 independent of, such that

C73' ’ f ’21/2(6Q)§ Z ‘ f ‘?—I;/Q(Bﬁi)é C74‘ | f |?-11/2(89) (38)

icly,
forall f € HY/2(09).

The theorem can be proved analogously to Theorem 2.2.
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Remark 2.8 In the case of the tetrahedron
T= {(:E,y,z) eR}|0<zy zandz+y+2z< 1}

when the 'supplementary’ directions are chosen as

w=(f0) s w=(0n) s w=(0)
Vi3 = (%7*73»0>T, Vg = (%JX*@)T? V5 = (Q%a*%)r[a
V16 = _73>%70)Ta V7 = (_gaoa%)Ta V18 = (07_737%>T

the set9)Q); (i € I) are the following:
an:ﬂa (Z: 17273)7 aQZ :T4> (Z:475767 10711712)7

0 =Ty UTy, 0Ng=T1UT3, 0Q9=ToUT3,
O3 =T UTy, Oy =T1UTy, 0Q5="T5UTy,
O =ToUTy, 07 =T3UTy, Og="T3UTy,

whereT; denote the faces
T ={(0,y,2) |0<y<land0 < z<1-y},

Ty ={(2,0,2) |0<z<land0<z<1-z},
Ts={(z,y,0) |0 <z <land0<y<1-—ua},
Ty =A{(z,y,2) |0 < z,y,zandz +y + z = 1}

of T.
It can be verified by straightforward computation that the choice of thedets= 99); satisfies the
conditions of Theorem 2.7 and thus tHé/2 seminorm is separable dF.

Remark 2.9 It is easy to check that in the case of 'egg’ shaped polyhedrons and its halfs and quarters
the conditions of the previous theorem holds. The conditions of the theorems holds in the case of the
convex polygon based prisms. We note that in domain decomposition methods it is easy to decompose
the bounded domains into such type of subdomains.
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