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Abstract

In this project a new computational code is developed using cell centered finite
volume method with constant space-wise approximation over a control volume to
solve the Euler equations, which is modified by means of artificial compressibility
method. The code is based on a two dimensional second order central discretization
using an adoption of Jamenson’s artificial viscosity for stability [2]. Explicit 4th

order Runge-Kutta time integration is applied to evaluate steady state conditions.
At the outer surface of the computational domain, an extrapolation type boundary
condition is used. For validation, Rizzi A. W. test case is implemented [5]. As a
future plan, a solid wall technique is going to be developed for boundary condi-
tion remains to decrease the computational time. On the other hand, this code
is intent to be the basic of later improvements, namely an extension to 3D and
the construction of Navier-Stokes solver to analyse and optimize any kind of fluid
machinery.

Keywords: Euler solver, artificial viscosity, pseudo-compressibility method, finite
volume method

1 Introduction

The discretisation of the incompressible Euler or Navier-Stokes equations requires par-
ticular consideration since the time derivative of the density does not appear. Hence,
the time-dependent methods suitable for the compressible equations cannot be applied
without adaption.

There are two main approach to realize adaption mentioned above; vorticity-stream
function approach and primitive-variable approach.

In the vorticity-stream function approach, the velocity components are replaced by the
vorticity (ω) and the stream function (ψ) in the fluid dynamics formulation. The solution
of vorticity and stream function is obtained to describe the flow field. The velocity field
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can be calculated back according to definition of stream function. The pressure term is
not explicitly in the formulation. Hence, a new equation is necessary to introduce. By the
Poisson equation for pressure, which can be derived from momentum equations and in
which the pressure is in the function of velocity components or vorticity-stream function,
pressure can be determined.

The extension of this method to 3D problems is not straightforward, since a stream
function does not exist for a truly 3D flow. Several algorithms have been developed to
cure this limitation: 1. Vorticity-potential method: the formulation can be generalized to
3D by making use of a vector potential. This method may require more computational
effort than the primitive-variable approach. 2. Dual-potential method: the velocity is de-
composed as a scalar potential and a vector potential. The solution is solved for these two
potentials. Treatment of boundary conditions of this method is rather complex (Morino,
1986; Gegg et al., 1989). 3. Vorticity-velocity method: the solution is obtained by solving
the vorticity and velocity together. Several applications of this method can be found
(Agarwal, 1981; Gastski, et al. 1982; Gui, Stella, 1988) [7].

The extension of formulation of above methods is not a general approach for solving 3D
flow, since their numerical schemes and specification of boundary conditions are compli-
cated. On the other hand the primitive-variable approach does not have such complicated
formulation when it being applied to 3D flow.

In the primitive-variable approach the incompressible Euler and Navier-Stokes equa-
tions are most often solved in their primitive variable form (u, v, w, p) for 3D problems.
Even for 2D problems, the use of primitive variables is quite common. Two broad cat-
egories of the numerical methods in primitive-variable approach are next: the pressure
correction approach and the coupled approach.

The methods falling in the class of pressure correction approach can be applied to the
stationary as well as to the time dependent incompressible flow equations. They consist
of a basic iterative procedure between the velocity and pressure field. For an initial
approximation of the pressure, the momentum equation can be solved to determine the
velocity field. The obtained velocity field does not satisfy the divergence-free continuity
equation and has therefore to be corrected. Since this correction has an impact on the
pressure field, a related pressure correction is defined, obtained by showing, that the
corrected velocity satisfies the continuity equation. This leads the most often to a Poisson
equation for the pressure correction. The three most widespread technique are MAC
(Marker and Cell) method (Harlow, Welch, 1965), SIMPLE (Semi Implicit Method for
Pressure Linked Equations) family methods (SIMPLE, SIMPLEC, SIMPLER) (Caretto
at al., 1972; Patankar, 1980) and PISO (Primitive-Variable) Implicit Separator method
(Issa, 1986) [4].

In the coupled type approach the pressure is adopted in the fluid dynamics equations,
so there is no need to be calculated separately. For stationary flows, a structure similar
to the to the compressible equations can be recovered by adding an artificial compress-
ibility term under the form of the time derivative of the pressure added to the continuity
equation. When steady state is reached, this term vanishes. This type methods are also
applicable to describe transient phenomena by using dual time stepping. This method is
the pseudo-compressibility method, which was originally introduced by Chorin (1967) for
finite difference approximation, and this idea is used in this report [1].

All the numerical computations were performed at the Center of Information Systems
(CIS) of the Budapest University of Technology and Economics on a supercomputer. This
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serverfarm contains four Compaq 4100 nodes: 16 x EV5.6 (21164A, 600 Mhz, 8 MByte
cache) Alpha CPU, 32 GByte memory, 0.62 TByte hard-disc. The nodes communicate
by Memory Channel (Full/100 Mb).

2 Euler Solver

2.1 Governing Equations

The 2 dimensional incompressible Euler equations with the extension of the pseudo-
incompressible term in dimensional form are appeared:

∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= 0 (1)

with
U = [P/β2, u, v]t

F = [u, u2 + P, uv]t

G = [v, uv, v2 + P ]t

Where P = p/ρ, p is the static pressure, ρ is the density, u and v are Cartesian components
of velocity.

In order to satisfy the consistency property, when the steady state condition is reached,
the first term of the continuity equation is vanished, which means that the original form
of the incompressible Euler equations in dimensional form are appeared.

System (1) can be written in compact form with the introduction of total flux vector,
~H:

~H = F~ex +G~ey (2)

∂U

∂t
+ ~∇ ~H(U) = 0 (3)

Integrating system (3) over a control volume Ω, which is bounded by interface Γ, and
applying the Gauss divergence theorem, one gets:

∂

∂t

∫ ∫
Ω
UdΩ +

∫
Γ

~H~ndΓ = 0 (4)

where ~n = (nx, ny) is the local outward pointing unit vector normal to the boundary
surface, as it is shown in figure (1). Equation (4) simply states that, the rate of change of

the conservative variables in a volume Ω is balanced by the net flux ~H passing through
the boundary Γ of Ω volume [3].

In the finite volume approach, first, one should evaluate the contour integral of the
total flux vector ~H in equation (4). It is convenient to define total flux normal to the
surface of the elementary control volumes Ω, rather than making use of the individual
cartesian components. Hence, for the Euler equations the total flux in terms of normal
component of the velocity Vn (Vn = ~V ~n = (u~ex + v~ey)(nx~ex + ny~ey) = unx + vny) yields:

Hn = ~H~n =

 Vnβ
2

uVn + Pnx

vVn + Pny

 (5)
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Figure 1: Cell-centered finite volume formulation

with
U = [P, u, v]t

equation (4) can be written as:

∂

∂t

∫ ∫
Ω
UdΩ +

∫
Γ
HndΓ = 0 (6)

According to numerical experiments, the appropriate choice of pseudo coefficient; β has
an indispensable effect for the scheme to be accurate and convergent. In this case β can
vary from 3 to 7 and the results are shown at β = 3.

2.2 Cell Centered Finite Volume Spatial Discretization

The spatial discretization starts with setting up a mesh or grid, by which the flow domain
is replaced by a finite number of points, in which the numerical values of the variables will
be determined. In this work an H-type mesh is used, which symbolize that the physical
domain is divided into the set of grids consisting of pitch-wise lines in y direction and
quasi-streamlines.

Concerning the system (6), in order to pass from continuous to a discrete form, a
choice about the type of representation of the solution vector over the finite volume has
to be made. Having partitioned the computational domain, in a finite number of volumes,
the discrete unknown Uj of the generic point j, is defined as:

Uj ≡
1

Ωj

∫ ∫
Ωj

UdΩ (7)

This is consistent with the so called cell center approach. Hence, the unknown vector U
has to be interpreted as a mean value over the control volume rather than a nodal value
as in the cell vertex formulation. By substituting (7) into the first integral in equation
(6), and replacing the second integral by a summation over the number of faces Nf of the
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chosen control volume Ωj, equation (6) can be written in the following semi-discrete form
for the point j:

∂

∂t
Uj = − 1

Ωj

Nf∑
k=1

[Hn]j,kΓj,k (8)

where [Hn]j,k is the total inviscid flux normal to the cell interface with the length (surface
in 3D) of Γj,k cell boundary exchanged between points j and k. The quantity [Hn]j,k will

be referred to, in the following, as the numerical flux function H̃n. As the lowest level the
flux function is constructed from a piecewise constant data base, that is:

H̃n = H̃n(UL, UR) =
H̃n(UL) + H̃n(UR)

2
(9)

where UL = Uj and UR = Uk are the state values on both side of the surface under
consideration. Equation (9) corresponds to a first order accurate spatial discretization
[3].

2.3 Artificial Dissipation

All second-order central-discretization schemes, even with a stable time-step, suffer from
some instabilities. The problem is the spurious mode can be defined as an unphysical
set of discrete values satisfying the scheme at interior points and vanishing at the nodes
where a boundary condition is imposed. By this phenomena the odd and even mesh points
are decoupled and it is caused by the scheme itself. In order to make the computation
stable and cure the numerical artefact described above, some explicitly added higher
order dissipation; artificial viscosity may be introduced. In the present work Jamenson’s
[2] artificial viscosity is used, but of course in this incompressible case the second order
part of this numerical dissipation is negligible because of subsonic flow. So, the equation
(8) becomes

∂

∂t
Uj = − 1

Ωj

Nf∑
k=1

[Hn]j,kΓj,k +
1

Ωj

D (10)

where
D = Dx +Dy (11)

and
Dx = di+ 1

2
,j − di− 1

2
,j (12)

Dy = di,j+ 1
2
− di,j− 1

2
(13)

The all terms on right side have a similar form, for example across the cell interface
between the nodal values of (i, j) and (i+ 1, j):

di+ 1
2
,j = −ε(4)

i+ 1
2
,j
(Ui+2,j − 3Ui+1,j + 3Ui,j − Ui−1,j) (14)

Where the typical value of coefficients ε(4) is 1
128

.
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2.4 Boundary Treatment

The appropriate choice of boundary condition is indispensable for the code to be con-
vergent and accurate and it has an effect for the speed of convergence. The number of
physical and numerical parameters, must be imposed and computed, are determined by
theory of characteristic, which is particular for such as hyperbolic type systems where
the information propagation is dominant. The most widespread boundary conditions to
compute the numerical variables are based on the theory of characteristic, extrapolation
techniques and compatibility relations. In order to avoid the perturbation reflection at
the boundary and so to make the convergence faster, although, the characteristic type
boundary condition is preferred, in which the Riemann invariant is kept constant between
two states, but in this case, as a first approach an extrapolation technique is used to
determine numerical boundary conditions. In order to make all unknowns determinable
at the boundary, a set of variables are imposed as physical boundary conditions.

2.4.1 Inlet Boundary Conditions

In case of characteristic variables, two eigenvalues of the Jacobian are positive: Vn, Vn+cp

and one is negative Vn− cp with speudo-sonic speed: cp =
√
V 2

n + β2, suppose, for incom-

pressible flow that the pseudo-Mach number is less then 1 (Mp = Vn

cp
). The examination

of eigenvalues says that at the inlet boundary interface two characteristic lines come from
the outside of the computational domain, so two physical boundary condition must be
imposed, while one characteristic line goes out from the domain of interested, so one nu-
merical boundary condition must be known. In this case the next imposed set of variables
are chosen: the total pressure p0 and the angle of attack α. At the extrapolation type
boundary condition, a static pressure p is a primitive variables, which is the function of
the interior unknowns, which should be determined by the information propagates from
the interior towards the outside of the computational domain. This has been done by a
simple first order extrapolation technique. Now, the static boundary pressure is known,
hence the velocity V can be computed by:

pto = pst +
V 2

2
ρ (15)

Finally the u and v velocity components are possible to determine in the function of inlet
flow angle α and V velocity.

2.4.2 Outlet Boundary Conditions

At the outlet, there are one ingoing; Vn− cp and two outgoing; Vn, Vn + cp characteristics,
so one physical and two numerical boundary conditions have to be imposed. It is common
practice to fix the static pressure, while the velocity component u and v are extrapolated
from the interior.

2.4.3 Solid Wall Boundary Conditions

For a solid boundary condition, a mirror type wall model is adopted, see figure (2). There
is only one characteristic enters to the flow domain and only a single physical boundary
condition is to be imposed:

−→
V n = 0. Hence, the normal velocity component in ghost cell
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Figure 2: Mirror-type solid wall model

is equal to the inside ones, but with opposite direction, while the parallel component are
the same. As a consequence, all convective flux components through the solid boundary
will vanish, as soon as the steady condition is reached. Only one parameter (p) remained
to extrapolate from the interior by zero (pi = pB) or first order type.

2.5 Convergence

In this part the L2 norm of the normalized pressure residuals are computed by:

‖∆p

p
‖ = log10

√√√√ 1

Np

Np∑
i=1

(
∆pi

pi

)2 (16)

The figure (3) shows convergence for the extrapolation type boundary condition. This slow
convergence is caused, the most probably, by the perturbation reflection at the boundary,
which is not dumped. The computational time (in the function of the initial data) was
approximately 15 minutes.

2.6 4th Order Runge-Kutta Method for Time Stepping

A couple of stable time stepping method, with the appropriate constraints, are possible
to apply to solve the ordinary differential equation given by (10):

∂

∂t
Uj = − 1

Ωj

Nf∑
k=1

[Hn]j,kΓj,k +
1

Ωj

D = <(Uj, Uk) (17)

For the minimum computational storage and the large stability range with the optimal
choice of αk, the effective 4th Order Runge-Kutta method is used [3]. Omitting the the
subscript denoting the cell index, a general family of Runge-Kutta schemes is given by:

U0 =
Uk =
Un+1 =

Un

U0 + αk∆t<(U (k−1)) k = 1,m
Um

(18)
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Figure 3: Convergence history of the scheme

where the parameters αk are such that:

0 < αk ≤ 1 αm = 1 (19)

Generally, in case of fourth order accuracy in time in the linear case, as mentioned before,
let k = 4 be and for αk:

αk =
1

(4− k + 1)
(20)

For the optimal stability region, determine the coefficients αk, which maximize the CFL
number. So, at the second order space diskretization αk is given by [3]:

α1 = 1/4 α2 = 1/3 α3 = 1/2 α4 = 1 (21)

3 Validation

In order to make sure in the correctness of any calculation, the validation is always
necessary to deal with it. Generally, the experiments are the best test to certify our
computation, but, because of possibilities, they are not always available. Here, another
validation techniques is used: comparison to any commercial or other own code, for
example, on the same test cases, such as channel flow over a circular arc bump [2].
Although, this bench mark problem was originally developed for compressible flow, it
could be adopted to incompressible flow also.

3.1 Channel flow Over a Circular Arc Bump

This standard test case proposed by Rizzi [5] has been realized. The flow is examined on
a relatively coarse grid in the rectangular channel over the circular arc has a maximum
thickness of 4.2% in figure (4). The computational domain is divided three parts in order
to gain more information about the phenomena is going to be over the circular arc. In
the first part, x ∈ [3, 4.35], the grid stretched towards the bump. In the central part, x
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Figure 4: Channel and a circular arc with H-type grid; 72×21 points

∈ [4.35, 5.65], a constant grid spacing is used. Finally in the last part of the channel, x
∈ [5.65, 8], the grid is stretched starting from the bump towards the outlet plane. For
the stretching function, which is applied in the y direction also, a simple geometric series
type is considered:

L =
N−1∑
i=1

∆ξi (22)

where ∆ξi = ξi+1 − ξi is constant and predefined, L is the length to be stretched and N
is the number of points. Let R is the ration of two consecutive intervals:

R =
∆ξi+1

∆ξi
(23)

The sum of geometric series is given by:

L = ∆ξ1(
1−RN

1−R
) (24)

which, for a given N, L, is a nonlinear function to be solved with a Newton-Raphson
method or Fixed Point Iteration for R, if ∆ξ1 is given (and greatest value of ∆ξi) and
vice versa. The inlet total pressure is 100000 Pa, inlet flow angle is 0 and outlet static
pressure is 98000 Pa. Density is 1000 kg

m3 . The results of this flow field can be found in
figure (5) and (6) with two pressure iso-lines are shown on grid size of 144×42.

4 Future Plan

In order to decrease computational time a new soft solid wall boundary condition is going
to be developed, which was originally established in the Karim Mazahery Body’s Ph. D.
thesis in 1992 for compressible flow.

On the other hand this code has an excellent feature to extent to all viscous terms to
obtain full Navier-Stokes equation. Hence, DNS (Direct Numerical Simulation) computa-
tion or insertion of any turbulence model can be also applied for the governing equation
to describe the real flow field in any kind of geometry or fluid machinery.

The 3D extension of the code is also possible without any difficulties.
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List of Symbols

Variables
cp Pseudo-sound speed [m/s] w z comp. of velocity vector [m/s]

dΓ Surface element [m]
−→
V Velocity vector of comp. (u, v)

−→e Unit vector α Flow angle
F Convective flux vector (x component) ρ Density [kg/m3]
G Convective flux vector (y component) ψ Stream-function
−→
H Total flux vector ω Vorticity
Mp Pseudo-Mach number Ω Cell volume (area) [m2]
−→n Outward pointing unit normal Indices
p Pressure [Pa] to Total or stagnation condition
t Time [s] st Static condition
u x component of velocity vector [m/s] n Time level
U Vector of conservative variables n Normal to boundary
x, y Space variables x, y Refer to space variables
v y comp. of velocity vector [m/s] i,j Cell or spatial indices
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Figure 5: Pressure distribution over the circular arc in the channel with the mesh size of
144×42

Figure 6: Zoom to pressure distribution over the circular arc in the channel with the mesh
size of 144×42
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