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Abstract: We recall in this paper a general preconditioning method based on
block Incomplete LU factorization for solving general sparse linear systems. Two-level
factorization methods for 5-point difference matrices are analyzed, these methods use
block red-black ordering of the meshes, the basic scheme assumes an exact inversion of
the submatrix related to the first block of unknowns then forming the reduced system
explicitly. We compare various incomplete LU factorizations to approximate the Schur
complement matrix. Analytical bounds for the Schur complement and preconditioned
error matrices are presented.
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1 Introduction

This paper deals with the iterative solution of large sparse nonsymmetric systems:

(1.1) Au = b,

where A is a large and sparse real matrix of order n. In such cases, the Krylov subspace
methods combined with a limited preconditioning are choice methods. Among precon-
ditioning methods investigated by various groups, a class of ILU -type techniques has
emerged that possesses many of attributes of multilevel solvers [1, 2, 5, 6, 9, 16, 18,
19, 23-26, 29-33].
It is well known that the degree of parallelism in the application of the standard ILU
preconditioner (preconditioner arising from ILU factorization without fill-in) is lim-
ited. An approach to increase the parallelism in ILU preconditioner methods is to use
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domain decomposition methods. In this approach, the physical domain is decomposed
into a number of subdomains on each of which an independent incomplete factorization
can be computed and applied in parallel. The main idea is to obtain more parallelism
at the subdomain level rather than at the grid point level. Usually, the interfaces be-
tween the subdomains must be treated in a special manner. This approach is quite
general since can be combined with different methods within different subdomains. For
different variants of this technique; see, [5-7, 21, 26].
Another approach that also improves the degree of parallelism in the application of
the ILU preconditioner is to use the multi-color ordering. The problem addressed by
multi-coloring is to determine a coloring of the nodes of the adjacency graph of a ma-
trix such that any two adjacent nodes have different colors.
For a simple two-dimensional finite difference grid (five-point operator), we can easily
separate the grid points into two sets, red and black, so that the nodes in one set are
adjacent only to nodes from the other set. Assume that the unknowns are labeled by
listing the red unknowns first together, followed by the black ones. We will obtain a
system of the form

(1.2)

(
B F
E C

)(
x
y

)
=

(
f
g

)
,

where B and C are diagonal matrices.
The way to exploit the red-black ordering is to use the standard SSOR or ILU(0)
preconditioners for solving (1.2). The preconditioning operations are highly parallel.
For example, the linear system that arises from the forward solve in SSOR will have
the form

(1.3)

(
B
E C

)(
x
y

)
=

(
f
g

)
.

This system can be solved by performing the following sequence of operations:

1. Solve Bx = f .

2. Compute g̃ = g − Ex.

3. Solve Cy = g̃.

This consists of two diagonal scaling (operations 1 and 3) and a sparse matrix-by-vector
product (operation 2). The situation is identical with the ILU(0) preconditioning. The
structure of the ILU factors reveals that many more elements are dropped with the red-
black than with the natural ordering, then the result is that the number of iterations to
achieve convergence can be much higher with red-black than with the natural ordering
[26].
A second method that has been used in connection with the red-black ordering solves
the reduced system which involves only the black unknowns. Eliminating the red
unknowns from (1.2) results in the reduced system:

(1.4) (C − EB−1F )y = g − EB−1f.
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Note that this new system is again a sparse linear system with about half as many
unknowns. In addition, it has been observed that for easy problems, the reduced system
can often be solved efficiently with only diagonal preconditioning. The computation of
the reduced system is a highly parallel and inexpensive process.
We can also use a multi-level ordering of the grid points, for example Brand and
Heinmann proposed a repeated red-black (RRB) ordering; see, [4] and [10] for more
details on this technique and the order of the condition number. One notable drawback
of multi-coloring is that the efficiency of the preconditioning on the re-ordered system
deteriorates, compared with the original system [12].
This paper is organized as follow: Section 2 discusses a LU factorization technique to
construct the Schur complement matrix explicitly and gives the global preconditioner.
Section 3 shows some bounds for the Schur complement and the preconditioned error
matrices, these results will guide to a robust ILU preconditioner. Section 4 contains
comparisons numerical experiments which present the quality of this paper. Some
concluding comments are included at the end.

2 Block red-black ordering and preconditioners

2.1 Block red-black coloring

In general, in block factorizations, a pivot block is forced to be sparse, and that we
need an approximation to its inverse that has a similar structure [10, 12, 29, 30]. Fur-
thermore, this approximation should be easily computable.

◦ ◦ ◦ ◦ ◦ ◦• • • • • •
• • • • • •◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦• • • • • •
• • • • • •◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦• • • • • •
• • • • • •◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦• • • • • •
• • • • • •◦ ◦ ◦ ◦ ◦ ◦

FIG.1. Block Red-Black Coloring of a 12×8 grid.
We now consider an extension of the red-black coloring which consists of transforming
the system (1.1) into the following block form

(2.1)

(
B F
E C

)(
x
y

)
=

(
f
g

)
,

here B and C are block diagonal matrices, where each block is of size 2.
A block of size 2 will be found by coupling a node j with its neighbor (j + 1) with
the same color (Red) followed by two nodes that are different color (Black), we assume
again that the unknowns are labeled by listing the red unknowns first together, followed
by the black ones. This block two-by-two colors is illustrated in Figure 1 for a 12× 8
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grid (with white nodes corresponding to red nodes).
Then we have a 2× 2 submatrix of the form

(2.2)

(
bj,j bj,j+1

bj+1,j bj+1,j+1

)
.

One of the motivations of this block red-black coloring is to increase the degree of
parallelism compared to the consecutive numbering by rows and columns, since we can
invert the block diagonal matrix B exactly and in parallel.

2.2 Block-partitioned preconditioners

We can use the block factorization of A

(2.3)

(
B F
E C

)
=

(
B
E S

)(
I B−1F

I

)
,

where S is the Schur complement matrix

(2.4) S = C − EB−1F.

Since B is a block diagonal matrix, where each block is of small size, then its inverse
should be computed exactly and in parallel. We can solve (2.1) by solving the reduced
system

(2.5) Sy = g̃ with g̃ = g − EB−1f,

to compute y, and then by backward substitution

(2.6) x = B−1(f − Fy),

to compute x. It is well known that the above block structure (2.3) can be exploited
in different ways to define preconditioners for A. To do so, we define the block precon-
ditioner

(2.7) M =

(
B

E S̃

)(
I B−1F

I

)
,

where S̃ is some approximation to the Schur complement matrix S, for example in the
form of an approximate LU factorization such as ILUT (τ, lfil) [24].
In general; for unstructured matrices, the cost to compute the exact inverse of B is
prohibitive, then to approximate the Schur complement S with a sparse matrix, we first
approximate B−1 by a sparse matrix Y using some approximate inverse techniques; see,
[1, 3, 8, 14, 15]. Since Y is sparse, the matrix S̄ = C − EY F is also sparse hence its
application is more economical since S is often a dense matrix.
We can also use an approximate factorization of S̄

(2.8) S̄ = LS̄US̄ + RS̄,
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to define a preconditioner S̃ = LS̄US̄ for the Schur complement matrix S. When C is
not singular we can choose S̃ = C, or S̃ = I i.e. no preconditioning.
We can easily show that the preconditioned system has the particular form

(2.9) M−1A =

(
I −B−1F

I

)(
I

S̃−1S

)(
I B−1F

I

)
= U−1

A DUA.

We conclude that the efficiency of the global preconditioner M depends strongly on
how well S̃ approximates the Schur complement matrix S.

3 Analysis

Consider the incomplete factorization

(3.1) A = M + R = LU + R,

where M is the incomplete LU factorization of A defined by (2.7) and R is the error
matrix.
¿From (2.7) we can write

(3.2) S = S̃ + RS,

where S̃ is an incomplete LU factorization of S and RS is the matrix of elements that
have been dropped, then

(3.3) R =

(
0 0
0 RS

)
.

We suppose that B is of dimension m and C is of dimension l = n − m. We use in
latter the following notations:
B = (bi,j)m×m, F = (fi,j)m×l, E = (ei,j)l×m, C = (ci,j)l×l, S = (si,j)l×l, B−1 =
(βi,j)m×m.
An arbitrary element of the Schur complement matrix S is

si,j = ci,j −
m∑

k=1

m∑
q=1

ei,kβk,qfq,j.

Due to the particular structure of B we can easily show that

(3.4) si,j = ci,j −
m∑

k=1

(ei,kβk,kfk,j + ei,kβk,k+1fk+1,j),

or

(3.4
′
) si,j = ci,j −

m∑
k=1

(ei,kβk,k−1fk−1,j + ei,kβk,kfk,j).

Assume that a given element βi,j of B−1 satisfies the inequality

(3.5) |βi,j| ≤ α 1 ≤ i, j ≤ m,

for some positive real α. Denote γ = max1≤i,j≤n|ai,j| the largest elements in absolute
value of A.
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Proposition 3.1 The size of the elements of Schur complement matrix S is bounded
by γ(1 + 2mαγ).

Proof ¿From (3.4) we have

|si,j| ≤ |ci,j|+ |∑m
k=1(ei,kβk,kfk,j + ei,kβk,k+1fk+1,j)|

≤ |ci,j|+
∑m

k=1(|ei,kβk,kfk,j|+ |ei,kβk,k+1fk+1,j|)
≤ γ + 2mαγ2.

This result shows that the size of the elements of the Schur complement matrix
cannot grow uncontrollably if α is not too large. This shows that the LU factorization
is stable.
When a simple dropping strategy is applied with a threshold tolerance τ to Schur
complement matrix S, i.e., all entries (si,j) whose absolute values are smaller than τ
are dropped, whenever

(3.6) |si,j| < τ,

then we have

(3.7) ‖R‖F = ‖RS‖F ≤ τ
√

nz(RS) ≤ τ l,

where nz(RS) is the number of nonzero elements of the submatrix RS. The bound
(3.7) shows that the norm of the factorization error depends on the dropping tolerance
and the number of elements dropped.
The next result will require the following inequality:

(3.8) ‖XY ‖F ≤ ‖X‖F‖Y ‖2,

where ‖.‖F and ‖.‖2 are the matrix Frobenius norm and the 2-norm, respectively.

Proposition 3.2 Assume that the dropping rule (3.6) is applied and S is nonsingular,
then

(3.9) ‖(LU)−1R‖F ≤ τ l(1 +
√

2mα‖F‖2)‖S̃−1‖2.

Proof Starting from

(LU)−1R =

(
I −B−1F
0 I

)(
B−1 0

−B−1ES̃−1 S̃−1

)(
0 0
0 RS

)
,

then

(LU)−1R =

(
I −B−1F
0 I

)(
0 0

0 S̃−1RS

)
,

using inequality (3.8)

‖(LU)−1R‖F ≤ ‖
(

I −B−1F
0 I

)
‖2‖

(
0 0

0 S̃−1RS

)
‖F ,
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we can show that

‖
(

I −B−1F
0 I

)
‖2 ≤ 1 + ‖B−1F‖2

≤ 1 + ‖B−1‖2‖F‖2.

It is well known that

‖B−1‖2 ≤ ‖B−1‖F = (
∑m

j=1

∑m
i=1 β2

i,j)
1
2

≤
√

2mα

then

‖
(

I −B−1F
0 I

)
‖2 ≤ 1 +

√
2mα‖F‖2.

On the other hand, using inequality (3.8)

‖
(

0 0

0 S̃−1RS

)
‖F = ‖S̃−1R‖F

≤ ‖S̃−1‖2‖R‖F ,

from (3.7) we deduct
‖S̃−1R‖F ≤ τ l‖S̃−1‖2.

Remarks

1. Similarly, the norm of the inverse of the preconditioner is bounded by:
(3.10)
‖U−1L−1‖2 ≤ (1 +

√
2mα‖F‖2)× (1 +

√
2mα‖E‖2)× max(

√
2mα, ‖S̃−1‖2).

Indeed;

(LU)−1 =

(
I B−1F

I

)−1 (
B

S̃

)−1 (
I

EB−1 I

)−1

=

(
I −B−1F

I

)(
B−1

S̃−1

)(
I

−EB−1 I

)
,

then

‖U−1L−1‖2 ≤ ‖
(

I −B−1F
I

)
‖2‖

(
B−1

S̃−1

)
‖2‖

(
I

−EB−1 I

)
‖2

≤ 1 +
√

2mα‖F‖2)× (1 +
√

2mα‖E‖2)× max(‖B−1‖2, ‖S̃−1‖2)

≤ (1 +
√

2mα‖F‖2)× (1 +
√

2mα‖E‖2)× max(
√

2mα, ‖S̃−1‖2).
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2. The inequality (3.5) is difficult to satisfy, but if we assume that B is strictly diago-

nally dominant with bi,j ≤ 0, i 6= j and bi,i > 0, then each block

(
bj,j bj,j+1

bj+1,j bj+1,j+1

)
is nonsingular and its inverse can be written

(3.11)

(
bj,j bj,j+1

bj+1,j bj+1,j+1

)−1

=
1

det

(
bj+1,j+1 −bj,j+1

−bj+1,j bj,j

)
,

where det = bj,jbj+1,j+1−bj+1,jbj,j+1, since B is strictly diagonally dominant then
there exists ε > 0 such that det > ε and from (3.11) we show that

(3.12) 0 ≤ βi,j <
γ

ε

4 Numerical Experiments and Conclusion

We have tested the method described above in the case of the Poisson problem,

(4.1) −∆u = f in Ω = (0, 1)2,

and the convection-diffusion equation, who plays a very important role in computa-
tional fluid dynamics to simulate flow problems,

(4.2) −ν∆u + v̄.∇u = f in Ω = (0, 1)2.

Both problems are investigated on the unit square with Dirichlet boundary condition

u = 0 on Γ = ∂Ω.

In equation (4.2), v̄ is the convective flow and the viscosity parameter ν governs the
ratio between convection and diffusion.
We study the two problems [23, 30]:

(P1) v̄ =

(
cos(π(x− 1

3
)sin(π(y − 1

3
)

−cos(π(y − 1
3
)sin(π(x− 1

3
)

)
,

inside the circle of center (1
3
, 1

3
) and radius 1

4
, and v̄(x, y) = 0 outside.

(P2) v̄ =

(
exp(xy − 1)
−exp(−xy)

)
.

We use GMRES(20) with right preconditioning [28]. This method minimizes the resid-
ual and is therefore mathematically equivalent to several other generalized conjugate
gradient methods [1]. The preconditioner is defined by (2.7) where the approach S̃ of
S is performed in the latter.
The right hand side was generated by assuming that the exact solution is a vector of
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all ones and the initial guess was a vector of some random numbers. The computa-
tions were stopped when the 2-norm of the residual was reduced by a factor of 106 i.e.
‖rm‖2 < 10−6‖r0‖2 or when 200 iterations were reached, indicated by (−).
We will use the following names to denote the methods that we tested on the same
matrices. These matrices were reordered using the block red-black coloring described
in section 2.1 and five-point upwind finite difference scheme with uniform meshsize h
in both x and y directions [34].

MILU(0): Approximate block LU preconditioner, where the reduced system is solved
by backward and forward substitutions, which are performed with ILU(0) of S.

MILUD(τ): same as above, but S̃ is performed with ILUD(τ) factorization [27].
MILUT (τ, lfil): same as above, but S̃ is performed with ILUT (τ, lfil) factorization

[24].
Note that, when we apply the MILUD(τ) factorization to approximate the Schur com-
plement matrix S, we do not add the sum of all dropped out elements in a given row.

Table 1. Iterations to convergence for the Poisson problem
with various preconditioners for τ = 10−4 and lfil = 10.

MILU(0) MILUD(τ) MILUT (τ, lfil)
h−1 iter. spar. iter. spar. iter. spar.
17 13 2.23 3 3.79 5 2.97
33 20 2.29 4 5.33 7 3.04
65 34 2.32 4 7.20 10 3.07
105 80 2.33 5 8.19 13 3.08

All preconditioners used a safeguard (stabilization) procedure by replacing a zero pivot
with (0.0001 + τ)ri, where ri was computed as the average nonzero values of the row
in question. The storage requirements for each of the above preconditioner is that of
S̃. The storage required for S̃ is more difficult to estimate, but it is generally less than
2× lfil × l for ILUT (τ, lfil) factorization, where lfil is a fill-in parameter; i.e. each row
of LS̄ and each row of US̄ will have a maximum of lfil elements (escluding the diagonal
elements). We remark that this matrix storage is less than that of ILUT (τ, nfil)
factorization applied to the global matrix A (nfil indicates the nonzero elements per
row in each of the L and U factors), who requires locations less than 2× nfil × n.
In tables with numerical results, ”iter.” shows the number of GMRES(20) iterations;
”prec.” shows the CPU time in seconds spent in constructing the preconditioners;
”solu.” shows the CPU time for the solution phase; ”spar.” shows the sparsity ratio
which is the ratio between the number of nonzero elements of the preconditioner in
its block ILU factorization to that of the original matrix. The numerical experiments
were conducted on a Pentium III CPU at 550 MHZ with 64Mb RAM.
The solution details for the first problem (Poisson problem) are listed in Table 1 for
τ = 10−4 and lfil = 10. We note that for MILU(0) preconditioner the convergence is
slow. By comparing MILUD and MILUT , we can see that the number of iterations for
MILUD is less than that MILUT , but this profit is to the detriment of the sparsity ratio.
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Table 2. Iterations to convergence for the convection-diffusion
problem preconditioned by MILUT (10−4, 10).

ν 1 10−1 10−2 10−3 10−4 10−5

h−1 (P1) (P2) (P1) (P2) (P1) (P2) (P1) (P2) (P1) (P2) (P1) (P2)
17 5 5 5 5 6 4 6 4 8 4 8 9
33 7 7 8 8 9 6 10 5 10 5 12 13
65 10 10 11 11 13 9 14 6 14 6 15 10
105 13 13 14 14 17 12 19 8 20 6 20 6

Table 3. Iterations to convergence for the convection-diffusion
problem preconditioned by MILUD(10−4).

ν 1 10−1 10−2 10−3 10−4 10−5

h−1 (P1) (P2) (P1) (P2) (P1) (P2) (P1) (P2) (P1) (P2) (P1) (P2)
17 3 3 3 3 3 3 4 3 5 4 6 12
33 4 4 4 4 4 4 5 4 5 4 7 8
65 4 4 4 4 5 5 5 4 6 4 8 9
105 5 5 5 5 6 5 6 5 7 5 9 4

Table 4. Iterations to convergence for the convection-diffusion
problem preconditioned by MILU(0).

ν 1 10−1 10−2 10−3 10−4 10−5

h−1 (P1) (P2) (P1) (P2) (P1) (P2) (P1) (P2) (P1) (P2) (P1) (P2)
17 13 13 12 11 17 8 18 7 18 8 18 14
33 20 20 22 19 39 13 60 10 70 10 73 19
65 34 34 42 41 74 23 − 14 − 13 − 14
105 80 80 90 94 134 60 − 17 − 15 − 16

Tables 2, 3 and 4 list the number of preconditioned GMRES(20) iterations for solving
linear systems arising from convection-diffusion problem with v̄ defined by (P1) and
(P2). Note that the preconditioner MILUD yields better than MILUT and MILU(0). It
can be seen that for the preconditioner MILU(0), the convergence is very slow and not
reached for large problems (with small h), this due to the elements that are dropped
since the Schur complement S is also sparse. However for MILUD preconditioner with
τ = 10−6 and for the convection-diffusion problem (P2) the number of iterations de-
crease to 7 for h−1 = 17 or 33 and to 3 for h−1 = 65.
Tables 5 and 6 show that MILUT needed less than half the storage required for MILUD

to converge. Furthermore, the time ”prec.” necessary to construct the MILUT is less
than that of MILUD.
In Table 7, we chose several values for τ and lfil for MILUT (τ, lfil), one can remark
that, we obtain fast convergence at reasonable sparsity ratio if we decrease the drop-
ping tolerance and we increase the parameter lfil. The sparsity ratio is in all cases less
than 3.09 for lfil = 10, and less 4.05 for lfil = 15.
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Concluding remarks. We have presented three block ILU preconditioners where the
first block was inverted exactly. We have tested these preconditioners on matrices aris-
ing from block red-black coloring and five-point upwind finite difference scheme. Our
numerical experiments show that to conserve grid and Reynolds number Re (Re = 1

ν
)

independent convergence, we are obliged to increase the parameter lfil and to decrease
the dropping tolerance τ but this profit is to the detriment of the sparsity ratio. We
have showed that the Frobenius norm of a preconditioning step is directly related to
the size of B−1, RS and S̃−1. Hence a high quality of preconditioner must have a stable
block ILU factorization.

Table 5. Comparison of MILUD(10−4) and MILUT (10−4, 10) for solving
the convection-diffusion problem with v̄ is defined by (P1).

MILUD(10−4) MILUT (10−4, 10)
h−1 ν iter. prec. solu. spar. iter. prec. solu. spar.

10−1 4 0.33 0.17 7.21 11 0.16 0.22 3.07
65 10−3 5 0.33 0.17 6.98 14 0.11 0.27 3.05

10−5 8 0.22 0.27 6.23 15 0.10 0.38 2.98
10−1 5 1.54 0.49 8.20 14 0.39 0.88 3.08

105 10−3 6 0.98 0.61 7.97 19 0.39 1.15 3.06
10−5 9 0.82 0.77 7.12 20 0.38 1.21 3.00

Table 6. Comparison of MILUD(10−5) and MILUT (10−5, 15) for solving
the convection-diffusion problem with v̄ is defined by (P1).

MILUD(10−5) MILUT (10−5, 15)
h−1 ν iter. prec. solu. spar. iter. prec. solu. spar.

10−1 3 0.44 0.11 8.82 8 0.15 0.22 4.01
65 10−3 4 0.33 0.17 8.49 11 0.15 0.28 3.98

10−5 5 0.27 0.22 7.87 12 0.11 0.28 3.88
10−1 4 1.64 0.50 11.66 10 0.55 0.66 4.05

105 10−3 5 1.48 0.60 11.14 14 0.55 0.99 4.02
10−5 6 1.32 0.66 10.14 15 0.49 1.04 3.91

Table 7. Performance of MILUT (τ, lfil) for solving the convection-
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diffusion problem with v̄ is defined by (P2).

Parameters h−1 = 65 h−1 = 105
lfil τ ν iter. prec. solu. spar. iter. prec. solu. spar.

10−1 11 0.11 0.22 3.01 14 0.33 0.88 3.01
10 10−3 10−3 6 0.11 0.11 2.50 8 0.27 0.50 2.58

10−5 11 0.10 0.22 2.15 6 0.22 0.33 2.17
10−1 8 0.17 0.22 3.75 10 0.39 0.71 3.80

15 10−3 10−3 5 0.11 0.11 2.79 6 0.27 0.33 2.91
10−5 5 0.06 0.11 2.32 5 0.22 0.33 2.36
10−1 11 0.16 0.33 3.07 14 0.38 0.87 3.08

10 10−4 10−3 6 0.06 0.16 2.71 8 0.28 0.49 2.78
10−5 10 0.05 0.22 2.23 6 0.22 0.33 2.27
10−1 8 0.17 0.22 3.95 10 0.88 0.66 3.98

15 10−4 10−3 4 0.16 0.11 3.16 5 0.33 0.27 3.27
10−5 4 0.05 0.11 2.55 4 0.22 0.27 2.61
10−1 11 0.11 0.27 3.08 14 0.44 0.88 3.09

10 10−5 10−3 6 0.11 0.17 2.83 8 0.28 0.44 2.88
10−5 10 0.05 0.16 2.34 6 0.22 0.33 2.38
10−1 8 0.17 0.21 4.02 10 0.50 0.71 4.05

15 10−5 10−3 4 0.11 0.16 3.38 5 0.33 0.32 3.50
10−5 9 0.06 0.17 2.74 4 0.22 0.22 2.80
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Tech. Rep. GANMN 99-01, Université Libre de Bruxelles, Brussels, Belgium, 1999.

[24] Y. Saad, ILUT: A dual threshold incomplete LU preconditioner, Numer. Linear Algebra
Appl. 1(4) (1994) 387-402.



ILU PRECONDITIONER FOR SCHUR COMPLEMENT MATRICES 14

[25] Y. Saad, ILUM: A multi-elimination ILU preconditioner for general sparse matrices,
SIAM J. Sci. Comput. 17(4) (1996) 830-847.

[26] Y. Saad, Iterative methods for sparse linear systems, PWS Publishing, New York, NY,
1996.

[27] Y. Saad, SPARSKIT: A basic tool kit for sparse matrix computations, Technical Report
CSRD TR 1029, University of Illinois at Urbana-Champaign, IL, 1990.

[28] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for
solving nonsymetric linear systems, SIAM J. Sci. Statist. Comput. 7(1986) 856-869.

[29] Y. Saad and J. Zhang, BILUM: Block versions of multi-elimination and multilevel
ILU preconditioner for general linear sparse systems, SIAM J. Sci. Comput. 20(6) (1999)
2103-2121.

[30] Y. Saad and J. Zhang, BILUTM: A domain based multilevel block ILUT precondi-
tioner for general sparse matrices, SIAM J. Matrix Anal. Appl. 21(1) (1999) 279-299.

[31] Y. Saad and J. Zhang, Diagonal threshold techniques in robust multi-level ILU pre-
conditioner for general linear sparse systems, Numer. Linear Algebra Appl. 6 (1999)
257-280.

[32] J. Zhang, A sparse approximate inverse technique for parallel preconditioning of general
sparse matrices, Technical Report 281-98, Department of Computer science, University
of Kentucky, Lexington, KY, 1998.

[33] J. Zhang, On preconditioning Schur complement and Schur complement precondition-
ing, ETNA 10 (2000) 115-130.

[34] J. Zhang, Preconditioned iterative methods and finite differences schemes for
convection-diffusion, Appl. Math. and Comput. 109 (2000) 11-30.


