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Gábor Takács
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Abstract

In statistical learning theory, the Vapnik-Chervonenkis dimension is an important property of
classifier families. With the help of this combinatoral concept it is possible to bound the error
probability of a classifier, based on its performance on the training set. Convex polygon classifiers are
R2 7→ {+1,−1} mappings that partition the plane into 2 distinct regions such that one of the regions
is a convex polygon. In this paper, the Vapnik-Chervonenkis dimension of convex n-gon classifiers is
determined. Note that the label of the inner (convex) region is unrestricted which makes the problem
substantially different from the well known restricted case.

1 Introduction

In this article classifiers are Rd 7→ {+1,−1} mappings. The input vector and the assigned output value
are usually called the observation and the class label. Convex n-hedron classifiers are functions that can
be expressed in one of the following forms:

g(x) = sgn( min
1≤i≤n

wT
i x + bi),

g(x) = sgn( max
1≤i≤n

wT
i x + bi),

where x ∈ Rd and sgn(0)def= 1. The function class generated by only the first / second form is denoted by
MIN(d, n) / MAX(d, n). The union of MIN(d, n) and MAX(d, n) is denoted by MINMAX(d, n). In the
special case d = 2 convex n-hedron classifiers are called convex n-gon classifiers.

In statistical learning theory [1], the Vapnik-Chervonenkis (VC) dimension is an important property
of classifier families. We say that a set of classifiers G shatters a finite set of points, if the points can be
arbitrarily labeled by the members of G. The Vapnik-Chervonenkis (VC) dimension of G (denoted by
h(G)) is the maximum number of points that can be shattered by G. (If G can shatter arbitrarily many
points, then h(G) =∞.) This combinatoral concept is very useful in the field of classification, because it
appears in distribution-free error bounds [1]. Given a classifier g, there is no general connection between
its error probability R(g) and its error rate Rm(g) measured on the m-element training set. However if
we know a priori that g ∈ G and h(G) <∞, then with probability 1− δ

R(g) ≤ Rm(g) +

√
8
h(G) ln(2em/h(G)) + ln(2/δ)

m
.

It is easy to show that h(MIN(2, n)) = h(MAX(2, n)) = 2n + 1 [2]. This paper is about deter-
mining the VC dimension of MINMAX(2, n), which is a substantially different problem. Obviously,
h(MINMAX(2, n)) ≥ 2n + 1, because MINMAX(2, n) ⊇ MIN(2, n). By Assouad’s lemma [3] we know
that for any two function classes F and G with finite VC dimension, h(F∪G) ≤ h(F)+h(G)+1. Applying
this to MIN(2, n) an MAX(2, n) we get that h(MINMAX(2, n)) ≤ 4n + 3. In this paper we will prove
that the truth is near the lower bound. More precisely our statement is the following:
Theorem 1.

h(MINMAX(2, n)) =
{

3 if n = 1,
2n+ 2 otherwise.
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Figure 1: A point set in convex position. The red
and a blue signs cannot be separated by a triangle,
because for this we should intersect all edges of a
convex 8-gon with 3 lines.

Figure 2: A point set in tangled position. Indepen-
dent of the value of n, the red and the blue signs
can never be separated by a convex n-gon.

2 Concepts for the proof

Definition 1. A planar point set P is said to be in convex position, if its elements are the vertices of a
convex polygon.

In other words P does not have two distinct subsets Q1 and Q2, such that the convex hull of Q1

contains a point from Q2. The following simple facts can help in the proofs to reduce the infinite case to
a finite one:

• P is in convex position, if and only if every 4-element subset of P is in convex position.

• A 2-element subset of P is called an edge, if the line segment connecting the two points is an edge of
the convex hull of P. P is in convex position, if and only if every 5-element subset of P containing
an edge is in convex position.

Note that MINMAX(2, n) cannot shatter 2n+2 convexly positioned points, because for the alternating
labeling we should intersect all edges of a convex 2n + 2-gon with n lines (Fig. 1). This is also true for
MIN(2, n), moreover it implies that h(MIN(2, n)) ≤ 2n + 1, since MIN(2, n) can shatter only convexly
positioned point sets. The main difference between the two function classes is that MINMAX(2, n) is
able to shatter a non-convexly positioned point sets too.

Definition 2. A planar point set P is said to be in tangled position, if it has two distinct subsets Q1

and Q2, such that the convex hull of Q1 contains a point from Q2 and the convex hull of Q2 contains a
point from Q1.

Q1 and Q2 are called the tangled subsets. If P is not in tangled position, then it is said to be tangle-
free. Note that for any n, a tangled set of points cannot be shattered by MINMAX(2, n), because it is
impossible to separate Q1 from Q2 (Fig. 2).

3 The proof

First of all, let us recall the statement of the theorem:

h(MINMAX(2, n)) =
{

3 if n = 1,
2n+ 2 otherwise.

The case n = 1 is trivial, therefore we consider only the case n ≥ 2. It is easy to see that h(MINMAX(2, n)) ≥
2n + 2. Just place 2n + 1 points along a circle, in the vertices of a regular (2n + 1)-gon and put an ad-
ditional point in the center. Consider an arbitrary labeling of these 2n + 2 points. We will refer to the
points that have the same label as the center as red points while to the others as blue ones. There can be
at most n blue sequences along the circle. If the longest blue sequence is at most n long, then each blue
sequence can be separated from the red points by 1 line. If the length of the longest blue sequence is more
than n, then that blue sequence can be separated from the red points by 2 lines, and each remaining one
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by 1 line. If n ≥ 2, then the number of the remaining blue sequences is not greater than n− 2, therefore
n lines are enough.

Proving the upper bound h(MINMAX(2, n)) ≤ 2n+ 2 is a bit more difficult. We should show that no
2n + 3 points can be shattered by MINMAX(2, n). It suffices to consider point sets in general position
(no 3 points are co-linear), because if there is a point set that can be shattered by MINMAX(2, n), then
there also exists a generally positioned point set of the same size that can be shattered by MINMAX(2,
n). (The second point set can be constructed from the first by infinitesimal perturbations.)

Assume that MINMAX(2, n) shatters a generally positioned point set P. So far we know two necessary
conditions for this:

• P contains no 2n+ 2 points that are in convex position.

• P is tangle-free.

In the rest of the paper we will prove that if n ≥ 2 and |P| ≥ 2n + 3, then these requirements are
contradictionary, therefore no 2n+ 3 points can be shattered by MINMAX(2, n).

Theorem 2. Let P be a planar point set in general position. If P is tangle-free and |P| 6= 6, then P
contains |P| − 1 points that are in convex position.

Remark. General position is required, because we do not want to bother with degenerate polygons lying
on the boundary of convex and concave. The theorem would remain valid, if we omitted this restriction.

Proof. Denote the convex hull of P by conv(P). If conv(P) is a point or a line segment, then the statement
is trivial. The other cases are not so easy, because we can put arbitrarily many points into conv(P) such
that the requirements of the theorem are fulfilled. By the property of being a vertex of conv(P) or not,
the elements of P can be classified as outside or inside points.

At first consider the case when conv(P) is a triangle. Denote the 3 outside points by A, B and C. If
|P| ≤ 5, then the statement of the theorem can be easily verified. Therefore we can assume that |P| ≥ 7,
so we have at least 4 inside points.

Now select two arbitrary inside points and denote them by D and E. The line DE intersects two
edges of the triangle ABC. Without the loss of generality we can assume that the line DE intersects the
edge AB in the direction of D and intersects the edge AC in the direction of E. Draw the following line
segments into the triangle ABC:

• Segment DE, extended to the edges AB and AC,

• Segment BD, extended to the edge AC,

• Segment CE, extended to the edge AB,

• The extension of segment AD in the direction of D,

• The extension of segment AE in the direction of E,

• Segment BE,

• Segment CD.

These line segments partition the triangle ABC into 14 distinct regions (R1,R2, . . . ,R14).1

Number them according to Fig. 3. Now try to put a third inside point F into the triangle ABC
without introducing a tangle.

Lemma 1. If F /∈ R3 ∪R5 ∪R11 ∪R13, then P is in tangled position.

Proof.

• If F ∈ R1 ∪R2, then Q1 = {A,C,D} and Q2 = {B,E, F} are the tangled subsets.

• If F ∈ R1 ∪R4, then Q1 = {A,B,E} and Q2 = {C,D, F}.

• If F ∈ R6 ∪R7 ∪R8, then Q1 = {B,D,E} and Q2 = {A,C, F}.
1Boundary points belong to the region with the smaller index.
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Figure 3:

Figure 4:

• If F ∈ R8 ∪R9 ∪R10, then Q1 = {C,D,E} and Q2 = {A,B, F}.

• If F ∈ R6 ∪R12, then Q1 = {B,C,D} and Q2 = {A,E, F}.

• If F ∈ R10 ∪R14, then Q1 = {B,C,E} and Q2 = {A,D,F}.

Lemma 2. If F ∈ R13, then P is in tangled position.

Proof. If F ∈ R13, then lines DE, DF and EF partition the triangle ABC into 13 distinct regions
(S1,S2, . . . ,S13). Number them according to Fig. 4. Now try to place a 4th inside point G without
introducing a tangle.

• If G ∈ S1 ∪ S2 ∪ S4 ∪ S5 ∪ S6 ∪ S10 ∪ S11 ∪ S12 ∪ S13, then P is in tangled position by Lemma 1.

• If G ∈ S3 ∪ S8, then Q1 = {A,D,E, F} and Q2 = {B,C,G} are the tangled subsets.

• If G ∈ S7 ∪ S8, then Q1 = {B,D,E, F} and Q2 = {A,C,G}.

• If G ∈ S8 ∪ S9, then Q1 = {C,D,E, F} and Q2 = {A,B,G}.
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Remark. If F is a non-boundary point of R13, then {A,B,C,D,E, F} is tangle-free, but has no 5-element
subset in convex position. This is why the restriction |P| 6= 6 had to be made. However, by Lemma 2
this arrangement is an irrelevant branch that cannot be continued.

The following fact is a simple consequence of Lemma 1 and Lemma 2:

Corollary 1. If a set of two outside and three inside points is not in convex position, then then P is in
tangled position.

Now we are ready to finish the special case, when conv(P) is a triangle.

Lemma 3. Let P be a planar point set in general position. If P is tangle-free, |P| 6= 6 and conv(P) is a
triangle, then we can select |P| − 1 points from P that are in convex position.

Proof. Let us analyze the situation after placing m inside points. Denote the union of {B,C} and the
first m inside points with Tm. We know that T2 is in convex position. We will show that if m ≥ 2, then
the convex position of Tm implies the convex position of Tm+1. To verify this assume indirectly that Tm is
in convex position but Tm+1 is not. Since {B,C} is always an edge of conv(Tm+1) and m ≥ 2, this means
that Tm+1 has a 5-element subset that contains {B,C} and is not in convex position. Then by Corollary
1, P is in tangled position, which is a contradiction. Thus the convex position of Tm+1 follows from the
convex position of Tm. As a consequence, the set T|P|−3 = P \ {A} is also in convex position.

Remark. If we prohibit to place the third inside point intoR13, then the condition |P| 6= 6 can be omitted.
At second, consider the case when conv(P) is a quadrangle. Denote the 4 outside points with A, B, C

and D. If |P| ≤ 5, then the statement is trivial, therefore we can assume that we have at least two inside
points. Select two arbitrary inside points and denote them by E and F . The line EF intersects two
adjacent edges of the quadrangle ABCD, because otherwise P would be in tangled position. Without
the loss of generality we can assume that the line EF intersects the edge AB in the direction of E and
intersects the edge AC in the direction of F . Now try to place a third inside point G into the quadrangle
ABCD.

Lemma 4. If G is inside the pentagon BCDEF , then P is in tangled position.

Proof. There are two possible cases:

1. The extension of AD in the direction of D and the extension of AE in the direction E intersect
different edges of the quadrangle ABCD.

2. The extension of AD in the direction of D and the extension of AE in the direction E intersect
the same edge of the quadrangle ABCD. We can assume without the loss of generality that the
intersected edge is BD.

In the first case, the line segments DE and DF partition the pentagon BCDEF into 3 distinct regions
(R1, R2, R3), as it can be seen in Fig. 5. If G ∈ R1 ∪ R2, then {B,D,E, F} and {A,C,G} are the
tangled subsets. If G ∈ R2 ∪R3, then {C,D,E, F} and {A,B,G} are the tangled subsets.

In the second case, DE and the extension of AF in the direction of F partitions the pentagon BCDEF
into 4 distinct regions (S1, S2, S3, S4), as it can be seen in Fig. 6. If G ∈ S1 ∪ S2, then {B,D,E, F}
and {A,C,G} are the tangled subsets. If G ∈ S2 ∪ S3, then {C,D,E, F} and {A,B,G} are the tangled
subsets. If G ∈ S4, then {B,C,D, F} and {A,E,G} are the tangled subsets.

By Lemma 4, inside points up from the third can be placed only into the region ABC \ BCEF
without introducing a tangle. This and Lemma 3 (applied to P \ {D}) implies that P \ {A,D} is in
convex position. The restriction |P \ {D}| 6= 6 can be now omitted, because the quadrangle BCEF is a
forbidden area. If P \ {A,D} is in convex position, then P \ {A} is too. This completes the proof of the
special case when conv(P) is a quadrangle.

At third consider the case when conv(P) is a pentagon. Denote the 5 outside points by A, B, C,
D and E. Using the same reasoning as before we can assume that we have at least two inside points.
Pick two arbitrary inside points F and G. The line FG intersects two adjacent edges of the pentagon
ABCDE, because otherwise P would be in tangled position. Without the loss of generality assume that
the line FG intersects the edge AB in the direction of F , intersects the edge AC in the direction of G,
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Figure 5: Figure 6:

Figure 7:

moreover BD and CE are edges of the pentagon ABCDE. Now try to place a third inside point H into
the pentagon ABCDE.

Lemma 5. If H is inside the hexagon BCDEFG, then P is in tangled position.

Proof. Line segmentsBE and CD partition the hexagonBCDEFG into 4 distinct regions (R1,R2,R3,R4),
as it can be seen in Fig. 7. If H ∈ R1 ∪R2 ∪R3, then P is in tangled position by Lemma 4. If H ∈ R4,
then P is tangled too, because there exists a line connecting two inside points that intersects non-adjacent
edges of conv(P). For example the line FH cannot intersect adjacent edges of conv(P).

By Lemma 5, inside points up from the third can be placed only into the region ABC\BCFG without
introducing a tangle. This and Lemma 3 (applied to P \{D,E}) implies that P \{A,D,E} and this wise
P \ {A} is in convex position.

Finally consider the case when conv(P) is a k-gon (k ≥ 6). Denote the outside points by A1, A2, . . . , Ak

and the inside points by B1, B2, . . . , Bm. The line B1B2 intersects again two adjacent edges of conv(P).
Without the loss of generality assume that the line B1B2 intersects the edges A1Ak and A1Ak. No
inside point can be located in the (k+1)-gon A2A3 . . . AkB1B2, because otherwise P would be in tangled
position by Lemma 5. But then it follows as before that {A2, Ak} ∪ {B1, B2, . . . , Bm} = P \ A1 is in
convex position.
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