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Abstract

The domain decomposition (DD) technique is well-suited for constructing parallel par-
tial differential equation solvers. By means of the Additive Schwarz Method we derive and
analyse Dirichlet-type DD preconditioners. Such preconditioners contain three components
which are the (modified) Schur complement preconditioner, the local Dirichlet problem pre-
conditioner, and the so-called basis transformation. Of all components, the last one plays
the most crucial role.

Amongst other methods, multigrid techniques have been popular for defining this basis
transformation. However, the quality of the preconditioner deteriorates as h — 0. In this
paper we investigate whether the use of the full multigrid method can remedy this short-
coming.

The technical theoretical analysis has been carried out for a model problem and the
full two-grid operator. In numerical experiments the full multigrid basis transformation has
been tested. The analysis shows that full multigrid behaves asymptotically as the multigrid
method but displays better numerical performance.

Keywords: Domain Decomposition, Preconditioners, Full Multigrid, Finite Elements, Conju-
gate Gradient Method, Parallel Algorithms

1 Introduction

The interest in parallel solvers for partial differential equations has risen in recent years. Thus
the domain decomposition method (DD) became increasingly popular since it contains a natural
parallel structure. As it is usual with this method, we utilize the resulting block system of linear
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(cf. section 3 for a more detailed description). The Additive Schwarz Method has been employed
to construct preconditioners C' of the type

C'_(IC KCIBI_T)(CC O)( Ic O)
~\ o I; O C;p By 'Kic I
for the (parallel) conjugate gradient method (cf. [12, 13], and section 3). Two of the three
components of this DD preconditioner, namely the (modified) Schur complement preconditioner
Cc, and the local Dirichlet problem preconditioner Cj, have been studied intensively by the
DD community (cf. the proceedings of the international Symposia on “DD methods for partial
differential equations” since 1987 [7, 3, 4, 8, 18, 1, 19], and also [2, 5, 6]). Haase/Langer/Meyer
[12, 13] proved that the quality of the DD preconditioner is dominantly influenced by the third
component, the basis transformation B;. This basis transformation determines the perturbation
Te of the Schur complement which, in turn, influences the spectral radius y = Q(S&lTC) and
finally the relative condition number of the preconditioner, x(C~'K) = O(u) (provided that
C¢ and Cf are chosen appropriately).

Several ideas to choose the basis transformation B; which is defined implicitly by some

iteration method are summarized in section 3. Our interest is focused on the multigrid method
for which it is known that

e the application of s = O(Inh~!) multigrid cycles ensures a bounded condition number
k(C71K) = O(1) (cf. [12]).

e the application of s = 1 multigrid cycle results (in numerical experiments) in a growing
condition number x(C~'K) = O(h~!) as h — 0 [12].

In this paper we investigate the use of one full multigrid cycle for the definition of the basis
transformation. Special interest is paid firstly as to whether the increasing condition number
k(C~ 1K) can be overcome as h — 0, and secondly to the computational expense.

Sections 2 is devoted to the model problems whereas section 3 deals with the DD precon-
ditioner and the basis transformation B;. The theoretical analysis of the full multigrid basis
transformation is performed in section 4. Unfortunately the analysis turned out to be so techni-
cal that only the full two-grid operator on a simple model problem could be treated. In section
5 the numerical experiments with the full multigrid operator are given. Section 6 summarizes
the results obtained.

2 The model problems and the domains

Here we consider exclusively the Poisson equation with homogeneous Dirichlet boundary condi-
tions:

Find u(z) € H)(Q) : / Viuvey = /fv Vo € HY()
Q Q

and ) being a bounded two-dimensional domain with Lipschitz-continuous boundary I' = 9f2.
By means of the usual linear triangular finite element discretization we obtain a system of linear
equations K v = f with a symmetric and positive definite matrix K.

In this paper we consider two model problems. The model problem 1 is given by the differ-
ential equation mentioned above and the domain €2 consisting of two unit squares. This domain
is shown in Figure 1 which also illustrates some terms to be introduced later.

The model problem analysis is performed exclusively on this model problem 1. For numerical
experiments we also use the model problem 2. The corresponding domain {2 and the subdomains
Q; are depicted in Figure 2.

For a further (real life) problem the reader is referred to [20].
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Figure 1: Model problem 1 (triangulation and subdomains)
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Figure 2: Model problem 2

3 The Domain Decomposition Preconditioner

For the domain decomposition method (FE substructure technique) let the domain €2 be subdi-
vided into p non-overlapping subdomains ;. The coupling boundary I'c is defined as T'¢ :=
ij 09Q; \ I'p with I'p being the Dirichlet boundary. The index ‘C’ always refers to nodes on
%h;t coupling boundary ['c whereas the index ‘I’ relates to nodes inside the subdomains £2;.
Figure 1 may serve as an example.

For the finite element method used here we utilize the basis ® = {1, ...pn} consisting
of the common piecewise linear ansatz functions ¢; over the internal nodes of the triangulation.
Let the numbering be such that all ansatz functions related to I'c come first, followed by those
related to the inner nodes of 1, Q5 ... With this special ordering the resulting system of linear
equations can be written in block form

(we %) ()= (%)
Kic Kip ur I,



The basis transformation of the FE basis ® to the approrimate discrete harmonic basis T is

given by
~ Ic (0]
U= d % _
( ~B;'Krc I )

The Additive Schwarz Method (ASM) corresponding to the splitting of the finite element space
into the subspaces span{@ * (Ic, —BI_IKIC)T} and span{q) * (O, II)T} yields the precondi-
tioner (cf. [12, 13, 23])

p— (Ic KoaiBi" Sce+Te O I O
~\ 0 I 0 K B;i'Kic I

The matrices By, S¢ = Ko — KeiK;'Kic, Tc = Ker(K;' — By Ki(K;' — By ) K¢,
and S¢ + T¢ are referred to as the basis transformation, the Schur complement, the perturbation
of the Schur complement, and the modified Schur complement, respectively.

Finally the matrices S¢ + T¢ and K are replaced by symmetric, positive definite and
spectrally equivalent matrices C'¢c and Cf, i.e.

Yo Cc < Sc+Tc < 7cCc and 7,Cr < Ki <770

It has been shown in [12, 13] that the resulting preconditioner

o.— (Ic EaBi" Cc O I O )
' ) I; O C; B'Kic I

is spectrally equivalent to K with the spectral condition number estimate

/%) (vat Vi) <sC'K) < (7/9) (Va+Vitn) 2

Here p:=p (SEITC) is the spectral radius of SEITC, and v :=min{y,,7,} and 7 := max{7¥¢, ¥}
In our examples the three components C7, Cc and By of this preconditioner C are chosen
as follows:

e (7 is defined by a suitable symmetric multigrid method yielding h-independent constants
7, and y; =1 (cf. [17]).

e For C¢ the classical Dryja preconditioner (cf. [5]) is used in the model problem 1 giving
h-independent constants y c and 7o as well. In example 2, the BPS preconditioner [2] is

applied resulting in a relatively slowly growing ratio Yo /v, = O(In®h~1) as h — 0.

e By is implicitly defined by the iteration operator M of some iteration method, i.e.
—\-1
Br = K; (II—MI) . (3)

For model problem 1 and for several operators M the behaviour of the spectral radius
1= 0(Sg'T,) as h — 0 is as follows:

— The two-grid operator (i.e. multigrid with two grids) led to x4 = O(h~!) on numerical
examples (cf. Haase [10]).

— The application of one multigrid step resulted in a growing p = p (SélTC) ash —0
on numerical tests [10]. Theoretically the growth is at most O(h~!) [12]. However,
O(Inh~') multigrid steps ensure a bounded .



— Haase, Langer, Meyer, and Nepomnyaschikh [14] construct the initial guess of the
multigrid iteration by means of a hierarchical extension procedure. This gives u = o (S; 1TC) =O0O(nh 1),
or equivalently, O(Inln A~!) multigrid steps imply a bounded u.
Haase [11] improved the extension technique and showed that O(InInh~!) smoothing
steps yield a bounded pu.
Recently Nepomnyaschikh [21] proposed a BPX-like extension operator resulting in
a bounded p without multigrid improvement.

— Haase [10] applied suitable frequency filter methods yielding an apparently bounded
4 in numerical experiments.

These theoretical and numerical results indicate that the spectral condition number x(C 1K)
depends heavily on p = 0(S;'T,;) and thus on Tc = Ker(K;' — By 1)K (K;' — By ) Kc.
Hence the improvement of x(C~*K) has to be achieved via the basis transformation Bj.

To our knowledge the use of the full multigrid technique for the definition of the basis
transformation By has not been investigated theoretically. The analysis of this method is a
major aim of this paper. We try to find out as to whether the h-dependence of y = o (SEITC),
as it occurs by applying only one multigrid step, can be overcome.

4 Model problem analysis

As outlined above we intend to analyse the full multigrid method for defining the basis trans-
formation B;. Due to the very complex matter however we have to restrict the analysis to the
full two-grid operator and the model problem 1 instead.

In this section the basic formulae to evaluate u = o (SalTC) are derived first, followed by
the analysis of the full two-grid operator. For the special case where the relaxation parameter
is chosen to be w = 1.0 a proof of the growth of y is presented in the remainder of this section.

4.1 Basic formulae

We consider the model problem 1 (cf. Figure 1). Following [10] the basis transformation matrix
By as defined in (3) leads to

T MK K¢ ucl?
u= Q(SEITC) = sup M = sup | 1 5 CHKI
ug €RNC\ {0} (Scuc  uc) u €RNC\{O} “@CHSC
p
> MKy Kreg ucll,
= sup = >
uc€RNC\{0} ||Hc||5(,

because of the block structure of M; = diag{MI,i}i:Lp ,of Kjc = KcT’I = [Kica ---, Kicpl,
and of K; = diag{Kr;}i=1, (with p =2 subdomains). Introducing

M 1K) Ko e,

(4)

§; = sup
ug€RNO\ {0} luc|%,

p
gives 4 < > d;. The terms of equation (4) will now be evaluated by means of the Fourier
i=1

1=
analysis which utilizes the basic ideas of Stiiben and Trottenberg [16].
Let the indices k and ¢ correspond to the z-directions and [ and j to the y-direction. Let
n = 1/h be the (even) number of intervals on [0, 1]. The eigenvectors and the eigenvalues of the



matrix Ky are (cf. [22])
prg = {pk(i) - m(h) Yijmo.m  and Mg =X+ A kl=1..n-1
with  up(i) = V2h sin(knih)  and X\ = 4sin?(knh/2)

Let the Fourier expansion of u. (on the coupling boundary I'¢) be

wcli) = Sem)  with o = (g, ) = S ue(ul)
=1 j=1

Then the denominator of (4) can be approximated as

n—1

lucli3, = (Scuc,uc) = Y /A2 +4N\ of (5)

=1

which is asymptotically exact as b — 0 (cf. Golub [9] and Haase [10]).
The numerator |[M ;K . 1 Kic, QCH%{” of (4) has been derived in Haase [10] as follows:

n—1ln—1
y, = Krcue = D> (—mln—1) 1) iy
=1 k=1
N —een—1)
=1 k=1 kil
||MIK1_1KICMC||%(, = ||MI§1||%(, = (KIMIKIaMIEI) . (7)

With these expansions (5) and (7) the fraction §; and thus the desired spectral radius p = o (SE_ITC)
will be evaluated. Equation (7) is of special interest since it contains the iteration operator M
which describes the basis transformation By (cf. (3)). The next subsection is devoted to the

application of the full two-grid operator for the definition of M.

4.2 The full two-grid operator

Let M; and M; denote the two-grid operator and the full two-grid operator, respectively. We
will expand M; and then obtain an exact formula for ||M;z IH%(I and eventually for 4.
We start by introducing the abbreviations

E=n—k , s, = sin®(kxh/2), ¢x = cos’(knh/2)

which yield obviously sy = ¢; and ¢ = sg. Let [k, 1] := {(k,1), (K, 1), (k,I'),(K',I')} be an
index quadruplet. Let zp, ; := (Thts Thr 15 Tho 7 mk/,l:]T be that 4-dimensional subvector of a vector
T = {2k} 1 —1 that corresponds to [k,!]. Analogously let X[ ; denote the 4x4 submatrix
of a (diagonal or block-diagonal) matrix X whose entries relate to [k,!]. Let [I] := {l,I'} be
an index pair. Then } y; and 3 » shall denote the summation over all index pairs and index
quadruplets, respectively.

Let us now derive the expansion of M 1 and M. The two-grid operator M T can be written
as

My = Sy Cy Sp = (Ih - %Kh) : (Ih — K'Y Kh) : (Ih _ %Kh)

The indices h and H are related to the fine and coarse grid, respectively. We apply one w-Jacobi
iteration for pre- and post-smoothing. The following notation is used.



Sh —  pre- and post-smoothing operator with smoothing parameter w

Ch —  coarse grid correction operator
I, —  identity matrix
K;,Ky -  stiffness matrix K of the fine/coarse grid
It —  bilinear interpolation operator from the coarse onto the fine grid
I }fl —  restriction operator from the fine onto the coarse grid
The full two-grid technique means that the coarse grid system Kgyug = rg is solved first
before taking the interpolant u, 1= I }‘I ug as the initial guess of the subsequent two-grid

iteration. Thus we have

U— Uk = ]\;II(u—u,H_%):MI(U—I?IuH):MI(u—Ifleler)
= Mr(u—If Kg' IF ry) = My (u— Iy Kt I (f — K ug))
= Mr(u—TI8 K  TH Ky (u—wy)) = My (T - I% K TH Ky (uw— wy,)

(since we start with ug = 0). Therefore the error transition operator of the full two-grid operator
can be expressed as

Mr =M (I-I%5 K T Ky) = 8, CyL S - Cy
This operator My will be expanded with respect to the orthonormal basis
Q:= {Mk,l}k,lzl,n—_l

of the eigenvectors of K. Let the eigenvectors of an index quadruplet [k, ] be placed in adjacent
columns. The analysis of the appropriate operators results in

Kr-Q = Q-A
Ch-Q@ = Q-C
and thus M;-Q = S,ChSh-Ch-Q=0Q-©COC

The matrix A occurring in (8) has the form

A = diag{ A}y —timr = 4- diag{sg + s}y —tmt

The matrix © represents the w-Jacobi smoothing and thus expands to

0 = diag{ (1 - %Ak,l)}

The coarse grid correction matrix C' has been derived in [16] and [10] to be

C = blockdiag{Cl}

Wlth C[k:,l] = I — R - C CTA[]C,[] (9)
and I = the 4 x4 identity matrix,
1
R = — - 10
4(skek + sicp) (10)
c = [exe, —Skey, —CpSy, sksl]T . (11)

Here A ) is the corresponding submatrix of A, i.e

Appy = 4 - diag{sy + s, cx + 51, s + ¢, cx + ¢}



Note that for k& = £’ and/or I = I' the matrix Cj;,; is reduced to the 2 x 2 or 1 x 1 identity
matrix. Additionally the matrix ©COC is block-diagonal and thus the eigen subspace related
to the quadruplet [k,!] remains unchanged under the application of the full two-grid operator

M;j.
Let us repeat the Fourier expansion (6) of z;:

n—1ln-—1 ’I’),—l n—1ln—1
zI—ZZ( uk}\kl l) per = DY Britki=Q- B

=1 k=1 =1 k=1

—urp(n—1
Bry = “in 1) )al

with
Akl

Utilizing the matrix relations (8) we conclude

Mz = M;-QB=Q-0C0C-p3
KiMiz; = K;-Q-0COC-B=Q-A-0COC-3
= (KrMjz;, Miz;) (Q-A-©COC-B,Q-0COC - p)
(cTec"e - A-0COCH, B)

since @ is an orthonormal basis. We introduce the new block-diagonal matrix
F = CTeC"®-A-6COC = blockdiag{F}
with — Fey = ClyOpy Cly Ok Mgy~ Ok Cleg Oy Cley € RP

and obtain the intermediate result

||M1§I||%(1 = (Fﬁa ﬁ) = Z(F[k,l] ﬁ[k,l],ﬁ[k,l])

[k,]

The substitution (12) of the §;; by the a; can be written as

— n—1
Bry = 7'%/(\ ) Qy
kil
or By = Tma oy
[ pp(n—1) i
Akl 0
Ki! (An - 1) 0
ith T — k'l R4x2
wit [k,l] 0 _lf'k(n o 1) S
)
(=
i 0 Aprgr

and the definition ayp := [ay, ar]T. The application of this substitution results in

IMrzill%, = (FB,8) = (Fuy Buer Bpn) = > Fn T neqsp Tinaeqm)

Y [kd]

= > ChyFraTroen em) = > (G (Z
1 k

L2 (k1]

= Z(H[llg[z]agm) = (He,0)

U

(13)

(14)



with the new matrices

Gy = P[jl;,l]F[k,l]P[lc,l] € R¥? (15)
Hy = Y Guy € R
(k]
and  H := blockdiag {Hp;}

Thus the numerator of §; in (4) is evaluated.

The denominator of ¢; has been approximated in (5) as

n—1
lucllt, = (Scuc,uc) = D /A7 +4N of = Z(D[l]gm,gm) = (Da, )
= 0

Here Dp; and D denote the positive definite diagonal matrices

diag {\/Al? +40 /X + 4 }

blockdiag {D[l]}

Dy

and

Finally §; can be expressed as

b = sup
us€RNC\{0} ||@c||§c

since D™'H has a 2 x 2 block-diagonal form.

| Mizil%,

D

max @)
a2 (Dg,a)

= o(D7'H) = max g

(P Hu)

(17)

This last equation has been too difficult to analyse. It allows, however, an exact numerical
evaluation of §; and thus of y = o (SEITC). Table 1 comprises the the computed values of §; for
decreasing h and for three smoothing parameters w.

n=1/h w=0.5 w=1.0 w=15
4 3.6368 E-2 2.9302 E-3 6.6638 E-2

8 1.2118 E-1 1.5418 E-2 8.9133 E-2

16 2.8438 E-1 3.9860 E-2 9.5985 E-2

32 5.9469 E-1 8.5136 E-2 9.7809 E-2

64 1.2034 1.7312 E-1 9.8276 E-2

128 24141 3.4767 E-1 9.8395 E-2

256 4.8319 6.9606 E-1 9.8428 E-2

512 9.6656 1.3925 1.9639 E-1
1024 19.332 2.7852 3.9288 E-1

Table 1: Calculation of d; for the full two-grid operator

Note that the maximum in (17) always occurs at 4, = 1. The results presented suggest

the following

Conjecture 1 Consider the model problem 1 (cf. Figure 1). Suppose the full two-grid operator

with bilinear interpolation and w-Jacobi smoothing is used as M.

p = Q(S&lTC) apparently grows like O(h™') as h — 0.

Then the spectral radius



Remark 1 The growth of u = O(h™!) is obvious for w = 0.5 and w = 1.0. In order to
understand the different behaviour for w = 1.5 we have to look at equation (17). The two
diagonal entries of D[_I]IHM behave differently (in the numerical test). The right lower entry
(related to us = pn—1) seems to be bounded and dominates the spectral radius if n < 256. The
left upper entry however (related to u- = u1) grows like O(h~!) and takes over for n > 256.

Remark 2 The dependence of §; on the smoothing parameter w is shown in Figure 3. Four
different mesh sizes h = 1/n are considered.

100 T T T T T T T T T

10

01} .

0.01 1 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2
relaxation parameter w

Figure 3: Dependence of §; on w for different h

Remark 3 For the multigrid method discussed here bilinear interpolation and the transposed
restriction is assumed. The common FEM interpolation is not investigated since then (to our
knowledge) no useful Fourier analysis of the coarse grid correction matrix C' is possible.

4.3 Analysis of a special full two-grid operator

For the special case where the smoothing parameter is chosen to be w = 1 a proof of the growth
of 4 can be established.

Theorem 2 Consider the model problem 1 and the full two-grid operator as M. Suppose that
bilinear interpolation and w-Jacobi smoothing with w = 1 is used. Then the behaviour of the
spectral radius is p = ,Q(SEITC) > O(h™') as h — 0.

Proof: For convenience we assume that n > 8 is a multiple of 4.
Let the upper index (in parentheses) of a matrix or a vector refer to the corresponding entry.
With this notation we have

& = maxg(D

[ _lH[l]> > Q(D_lH[l]) > (D(l’l))_l-H(l’l)

U (1]



/2-1
! o 5 "
- . G G
44/s? + 51 %]: kl 4\/sl+sl nz/;

since Hy is symmetric. Additionally Ay, 1) and thus Gy 1) (and Hyy)) are positively semidefinit,

and therefore GE;”H > 0.

We restrict k to values n/4 < k < n/2 and aim for a bound of GE ’
simplicity we will omit the index quadruplet [k, 1] of the matrices Gy 1), A[k’

~

for such k. For

LN

J:Oe1)> Cle1y and
L) From (15) we obtain
Gpy=G = IT.c"ec’™-A-6C0C-T

and GHY = f'.g.e
with e; := (1,0)7 being the first unitary vector. Utilizing the trigonometric identities we
conclude

pe(n—1)  pg(n—1) )T
'es = |- y — ,0,0
' ( Ak,1 Akl

1 T
— VIR (1) sinfhnh) - (5 5 0,0)
Ak A
= n-d

with the new notation

2 ) 1 1 T
n° := 2h - sin”(kwh) = 8h - sgci and d:i={—, ,0,0

This leads to

GO = 2. 'CT.00T0.A-000-Cd

with A:=0C0O e R and b:=Cd e R*

All entries of the diagonal matrix A are positive. This implies

4
G = 2. Z (" AT)U) AD) L (Ap)D
7j=1

2
> 2 (0T AT) VAW (An)® = 2oy ((aD))
The first entry of A - b can be written as
(Ab)D = (1,0,0,0)- A-b = el A-b

with e; := (1,0,0,0)7 being the first unitary vector. We will now investigate the vectors el A
and b.

Let us start withel A =el-©C O =: (a1, a2, a3, as). We perform one w-Jacobi smoothing
step with w = 1. The corresponding matrix © becomes

0 = I—%A = diag{cx —s1, 8k —S1, ¢k —¢C1, Sk —C1}



In (9) the coarse grid correction matrix C' = I — R-cc'A has been derived. A cumbersome but
straight-forward calculation results in

cr — S1) - CkC
( (e —s1)% — (‘,sckck%ckcl - (sk +51) - (e — 1)
(ck — s1) - ckcr
6{@0@ _ skck—l-slcl

Ck — 81) - CkC
— W%Sr(sk‘f‘ﬁ)'(q—ck)

sge1 - (ex + s1) - (sk — s1)

Ck — 81) " CkC
\ (tlgckclc%sksl “(cx +c1) - (e1 — sk)

Using 0 < s1 < s <1/2 < ¢ < ¢1 <1 we obtain the inequalities

et _SkES < et Sk T 516 < ¢
Skcr + s1C1 Skck + 8101
Sk + 81
and a = (cp—s81)%- 1—c2027)
! ( k 1) < k 1Ska + S1C1
> (cr—51)% (1 —ck) = sg- (cxp —51)°
2 2,1 . 2 2
> spe ez —s81)7 = sk (cos ((5 —1)wh/2) — sin (7rh/2)>
1 1
= 8- 2 cos? (g — wh) > Zsk

Analogously the following bounds of the other entries a5 ... a4 are derived:

5% < a1
lesk < a9 for k > n/4
—s1 < a3 <0

0 < a4 < 25

The vector b = Cd =: (by, b, b3, b4)T is dealt with in a similar manner. From the expansion
of C' and d we conclude

1 _Cl'(Ck—Sk)_cc
Sk + 81 SpCk T s1c1 k¢l

1 c1 - (ck — si)
b — 1 ck 1 81 + SpCr Fsicp  SkC
4 Cl'(ck—sk)_cs
SkCk T s1c1  “k°1

_c1-(ck—sk)
SkCL + S1C1 SkS1

As above, we similarly obtain

zllerl
L < 4
7 < b
0 < b < g
1

g1 < b <0



These estimates for a; and b; result in

4
. 1 5
An)M = efA-b = ;aj-bj > 25K 3551
() 1 -
(Ab) > 16 5k ifk>n/4,n>8
(1,1) 2 1?2 L 5
and G > q -)\kl-((Ab) ) > 8h - spek - 4(sk + s1) - ===k
’ 256
> ih-si if k>n/4,n>8
Now the matrix entry H, [(11]’1) can be bounded according to
n/2—1 1 n/2—1
1’1 ) — 3 151 102 4
H[(l} ) — gy = ZG(I N> Z ahh > 7 Z h - (sin®(kmh/2))
[k] k=n/4 k—n/4
1 -t
2 n
> 1[ 1 sins(g:c) > 0.0001  forn>8
in
Since s1 = sin?(7 * h/2) = O(h?) we conclude
4\/8% +s1 = O(h)
1 (1,1) 1
and 0 > ——=-H 77 = O(h
‘2 awe o "
Thus the desired spectral radius p = 26; grows (at least) like O(h~!) as h — 0. |

5 Numerical experiments

We apply the parallel preconditioned cg algorithm (ppcg) to model problem 1 and 2, respectively
[12, 13]. We utilize the preconditioner C of (1)

C:(IC KCIBI_T>(CC O )( I 0)
O I; O (C; B;IK c Ip ’
where By is defined either by multigrid or full multigrid and C; and C¢ are given below.

After investigating u = o (S 1TC) in section 4 we now focus on the number of ppcg iterations
that are required to reach a given relative accuracy (¢ = 107%). This number of iterations and
p are linked via the spectral condition number x(C™'K) (cf. section 3 and equation (2) for the
theoretical background).

Our experiments are twofold. The first part of this section is devoted solely to the verification
of our model problem analysis. The remaining part contains the actual comparison of the ppcg
iteration numbers for both the multigrid and full multigrid basis transformation.

Finally let MG and FMG denote multigrid and full multigrid.

5.1 Verification of the model problem analysis

Here we only verify the model problem analysis of section 4 by applying the ppcg algorithm to
model problem 1. The three components of the preconditioner C of (1) are as follows:



e The basis transformation By is defined by one full two-grid step. Three different parameters
of the w-Jacobi smoother are tested.

e The well-known Dryja preconditioner serves as Cc.
e We set Cr := K.

Let h be the coarse grid mesh size. The last two components ensure v / 7 = O(1). By has
been investigated in section 4, and the theoretical results are comprised in Table 1, in conjecture
1, in Figure 3, and in theorem 2. They strongly suggest u = Q(SalTC) =0k 1) ash —0.
According to (2) we expect the number of cg-iterations to be O(y/k(C—1K) = O(u'/?).

The computed values of 1 = 2§; are contained in Table 1. Hence for w = 0.5 and w = 1.0 the
number of iterations should be O(h~1/2) as h — 0.. For w = 1.5 we expect bounded iteration
numbers for b > 1/256; for smaller & the iteration numbers should grow as O(h~'/2). Table 2
presents the numerical results.

n=1/h 4 8 16 32 64 128 256 512
w=10.5 5 7 8 10 12 18 23 37
w=1.0 9 6 7 7 9 10 13
w=1.5 5 7 7 8 7 7 7 8

Table 2: Number of cg-iterations for the full two-grid operator

For a fixed w the iteration numbers show the anticipated behaviour and thus verify the model
problem analysis.

5.2 Comparison of multigrid versus full multigrid

These practical computations concentrate on the number of pccg iterations. The three compo-
nents By, C; and C¢ of the preconditioner (1) have been discussed briefly in section 3. Here
they are defined as follows:

e B is defined by multigrid or full multigrid, respectively. We employ the V cycle with one
w Jacobi pre- and post-smoothing sweep.

e (7 is defined by the W multigrid cycle with two Gauss Seidel pre- and post-smoothing
sweeps.

e For C¢ the Dryja preconditioner [5] and the BPS preconditioner (cf. [2]) are utilized in
model problem 1 and 2, respectively.

Note that (in contrast to the model problem analysis) the multigrid algorithms use the usual
FEM interpolation and restriction between successive grids.

In our tests we compare the multigrid and the full multigrid method for defining the basis
transformation Bj. Stimulated by the results of the full two-grid operator different parameters
of the w-Jacobi smoother are investigated.

Additionally we apply exact solvers By = C; := Kj. Then C¢ solely influences the pre-
conditioner C, and the iteration numbers obtained here thus measure the spectral equivalence
constants of C¢ to Sc.

The MG and FMG methods are performed on 2 to 8 nested grids. In our numerical tests two
different types of triangulation are considered for either model problem. All four coarsest grids



are depicted in Figures 4 and 5. The standard triangulation basically confirms the theoretical
analysis but the criss-cross pattern illustrates the strong influence of the triangulation on the
iteration numbers and the optimal smoothing parameter w.

Figure 4: Coarse grids of model problem 1, standard and criss-cross triangulation

Figure 5: Coarse grids of model problem 2, standard and criss-cross triangulation




5.2.1 Model problem 1, standard triangulation

In the second column of Table 3 we consider the special case of exact solvers (B = Cr = Kj).
The bounded iteration numbers confirm the spectral equivalence of C¢ to Sc.

In all other columns the three components By, C;, and C¢ are chosen as described above. The
iteration numbers are compared for the MG and FMG basis transformation, respectively, and
for different smoothing parameters w of By. We observe that the cg iteration numbers depend
heavily on the proper choice of w. The best iteration numbers are obtained with w ~ 1.2... 1.5.
This corresponds to the theoretical results of the full two-grid operator (cf. Figure 3). Thus
the theoretical results obtained there can be generalized (to some extent) to the full multigrid
operator.

For a fixed w < 1.5 the comparison reveals that FMG requires less (or no more) iterations
than multigrid. Finally, Table 4 summarized the degrees of freedom and the computational time
for w = 1.5.

Br defined by multigrid
. Br=0Cr smoothing parameter w

# Grids =K, 05 08 1.0 13 15 L7
2 3 6 5 5 6 7 8
3 5 8 7 7 7 9 10
4 5 10 9 8 8 9 11
5 5 15 11 9 8 10 12
6 4 21 14 11 9 10 12
7 4 32 20 14 10 10 12
8 3 50 30 20 12 10 12

By defined by full multigrid
. Br=0Cr smoothing parameter w

# Grids = K; 05 08 1.0 13 15 17
2 3 6 5 ) 6 7 7
3 5 8 7 7 7 8 10
4 5 10 8 7 7 9 12
5 5 13 9 8 8 9 13
6 4 18 11 9 8 9 14
7 4 24 14 10 8 9 15
8 3 35 19 13 8 9 16

Table 3: Model problem 1, standard triangulation, # cg iterations

5.2.2 Model problem 1, criss-cross triangulation

Here we present a similar comparison as above and draw similar conclusions.

For a fixed w < 1.2 full multigrid performs better (or not worse) than multigrid in terms of
iteration numbers. Table 6 summarized the degrees of freedom and the computational time for
w = 1.0.

The theoretical results of the full two-grid operator cannot be extended to this case since the
whole analysis is based on the standard triangulation (which, in turn, implies a different stiffness
matrix). The numerical results strengthen this point since the optimal smoothing parameter
w = 1.0 is smaller than with the standard triangulation.



A comparison of the iteration numbers for both types of the triangulation reveals its strong
dependence on the coarse grid and on the smoothing parameter w.

5.2.3 Model problem 2, standard triangulation

The increasing iteration numbers of the second column of Table 7 (exact solvers By = C1 = Kj)
confirm the growing spectral equivalence constants of the BPS preconditioner C¢ to S¢.

For the comparison of MG and FMG, and for different w, there hold exactly the same
conclusions as for the corresponding model problem 1. Table 8 comprises the degrees of freedom
and the computational time for w = 1.5.

Bj by multigrid By by full multigrid

# Grids DoF # iterations time # iterations time
2 45 7 0.1 7 0.1

3 153 9 0.1 8 0.1

4 561 9 0.1 9 0.1

5 2 145 10 0.5 9 0.5

6 8 385 10 2.3 9 2.5

7 33 153 10 9.7 9 10.6

8 131 841 10 39.8 9 44.3

Table 4: Model problem 1, standard triangulation, # cg iterations and time for w = 1.5



5.2.4 Model problem 2, criss-cross triangulation

The iteration numbers of the MG and FMG method are presented in Table 9. Again the same
conclusions as for the corresponding model problem 1 can be drawn. Table 10 comprises the
degrees of freedom and the computational time for w = 1.0.

The strong dependence of the iteration numbers on the triangulation and the smoothing
parameter w is even more obvious for this model problem 2.

6 Summary

Aim of this work was the analysis of efficient, cheap and parallel preconditioners C' based on
domain decomposition and especially on the Additive Schwarz Method. Starting with known
theoretical and practical results the importance of the occurring basis transformation By has
been pointed out in section 3. The influence of By on p = ¢ (S5'T,) and thus on k(C1K)
and the number of cg iterations has been shown. Our investigation has been focused on the full
multigrid method in order to define By, with special emphasis on the behaviour of 4 = o (SalTC)
as h — 0.

The model problem analysis of section 4 could only be carried out for the full two-grid
operator and the model problem 1. The numerical analysis suggested strongly 4 = O(h™!). A
proof has been established for a smoothing parameter w = 1.0.

The first part of the numerical experiments verified our analysis. In the second part the full
multigrid and the multigrid basis transformation were compared for both model problems. As
anticipated the cg iteration numbers grew slower with the first method. Additionally the strong
dependence of the iteration numbers on the triangulation and the smoothing parameter w has

By defined by multigrid
. B =Cy smoothing parameter w
# Grids = K; 05 08 09 10 11 12 15
2 2 4 3 3 3 3 4 4
3 2 6 5 5 5 5 6 7
4 3 8 6 6 6 6 7 11
5 3 9 7 6 6 6 8 15
6 4 12 7 7 6 7 8 21
7 3 15 7 7 6 7 9 32
8 3 20 8 7 6 7 11 49
By defined by full multigrid
. B =Cy smoothing parameter w
# Grids = K; 05 08 09 1.0 11 12 15
2 2 4 3 3 3 3 4 4
3 2 6 5 5 5 5 6 7
4 3 7 6 5 5 6 7 11
5 3 8 5 5 5 6 8 18
6 4 9 5 5 5 6 8 27
7 3 11 5 5 5 6 9 45
8 3 13 5 5 4 7 10 73

Table 5: Model problem 1, criss-cross triangulation, # cg iterations



been pointed out.
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