HEJ, HU ISSN 1418-7108
Manuscript no.: ANM-981030-A
Frontpage previous next

Bibliography

1
D. N. Arnold, R. S. Falk, and R. Winther.
Preconditioning in $H$(div) and applications.
Mathematics of Computation, 66, 1997.
To appear. Preprint available via http://www.math.psu.edu/dna/papers/hdiv.ps or hdiv.dvi.

2
O. Bíró.
Numerische Aspekte von Potentialformulierungen in der Elektrodynamik.
Habilitationsschrift, Technische Universität Graz, 1992.

3
D. Braess.
Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie.
Springer-Lehrbuch. Springer Verlag, Berlin, Heidelberg, 1992.

4
F. Brezzi and M. Fortin.
Mixed and Hybrid Finite Element Methods.
Number 15 in Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1991.

5
M. Costabel and M. Dauge.
Singularities of Maxwell's equations on polyhedral domains.
Prépublication 96-30, Institut de Recherche Mathématique de Rennes, December 1996.

6
V. Girault and P.-A. Raviart.
Finite Element Approximation of the Navier-Stokes Equations.
Number 749 in Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1979.

7
V. Girault and P.-A. Raviart.
Finite Element Methods for Navier-Stokes Equations.
Number 5 in Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.

8
B. Heise.
Analysis of a fully discrete finite element method for a nonlinear magnetic field problem.
SIAM J. Numer. Anal., 31(3):745-759, 1994.

9
B. Heise.
A mixed variational formulation for 3D magnetostatics and its finite element discretization.
Technical Report 96-6, Universität Linz, Institut für Mathematik, Arbeitsgruppe Numerische Mathematik und Optimierung, 1996.

10
B. Heise and M. Kuhn.
Parallel solvers for linear and nonlinear exterior magnetic field problems based upon coupled FE/BE formulations.
Computing, 56(3):237-258, 1996.

11
A. Kameari and K. Koganezawa.
Convergence of ICCG method in FEM using edge elements without gauge condition.
1996.
Proc. of the IEEE CEFC Conference, Okayama, Japan, March 18 - 20, 1996.

12
R. C. Mesquita.
Additional properties of the incomplete gauge formulation for 3-D finite-element magnetostatics.
IEEE Transactions on Magnetics, MAG-30:2861-2864, 1994.

13
I. Nishiguchi, H. Matsuzawa, and M. Sasaki.
A comparative study of magnetostatics using three-field formulation and conventional vector potential formulations.
1996.
Proc. of the IEEE CEFC Conference, Okayama, Japan, March 18 - 20, 1996.

14
K. Preis, I. Bardi, O. Biro, C. Magele, G. Vrisk, and K. R. Richter.
Different finite element formulations of 3D magnetostatic fields.
IEEE Transactions on Magnetics, MAG-28:1056-1059, 1992.

15
D. Rodger.
Finite-element method for calculating power frequency 3-dimensional electromagnetic field distributions.
IEE Proceedings - A, 130:233-238, 1983.

16
D. Rodger and P. J. Leonard.
Modelling the electromagnetic performance of moving rail gun launchers using finite elements.
IEEE Transactions on Magnetics, 29:496-498, 1993.

17
Y. G. Soloveitchik.
Mathematical model of three-dimensional electro-magnetic fields in electrotechnical devices.
Preprint UDK 621.37, Novosibirsk Electrotechnical Institute, 1990.
In Russian.

18
S. Williamson and E. K. C. Chan.
Three-dimensional finite-element formulation for problems involving time-varying fields, relative motion, and magnetic saturation.
IEE Proceedings - A, 140:121-130, 1993.

19
E. Zeidler.
Vorlesungen über nichtlineare Funktionalanalysis II: Monotone Operatoren, volume 9 of Teubner-Texte zur Mathematik.
Teubner-Verlag, Leipzig, 1977.
HEJ, HU ISSN 1418-7108
Manuscript no.: ANM-981030-A
Frontpage previous next