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Abstract
In this paper we introduce a new, theoretical model for safety-critical systems, in
which the distance from the dangerous conditions can be measured. The connection
between this distance model and real-life probability model will be discussed, too.
We illustrate the theoretical discussion with some simple examples.

1 Introduction

In real life there are a lot of systems, which are very difficult to describe. Handling them
is usually very complicated, in a lot of cases we are not able to give correct answers
even to easy questions. However, questions concerning the safety of the systems are very
important. These problems are examined by the theory of safety-critical systems. The
newest and probably most important results about this theory can be found e.g. in [2]
and [5].

In spite of the many references, there are no universal results, which examine these
systems from rigorous mathematical point of view. In this paper we describe a mathemat-
ical model to compute the ”closeness” of critical (dangerous) conditions in safety-critical
systems, using graphs. The theory of the distance and probability model described below
is a hopeful new result. In some simple cases we examine the possibility of practical
applications, too.

Handling these systems usually needs concurrent programming approach, details and
some general problems can be found e.g. in [1] and [4]. To describe concurrent systems,
besides the graphs there are some other structures. A possible improvement can be, if we
discuss the validity of our results in some special graph models. We will revert to this
question in a subsequent paper.

*The topic of this paper was partially presented by the authors in conferences [6] and [7].



2 Possible models

We can specify the conditions of a system in two different ways. If the system is very
complicated, then usually one system-condition can be described only with a lot of sur-
rounding elements.

a) Considering the system as a whole, one condition represents all of the information
about the surrounding elements. During the examination we can not see these
elements.

b) In the other case we describe the conditions as vectors. The components of these
condition-vectors are the conditions of the surrounding elements. From vector a we
can reach vector b, if from the conditions in vector a with the change of surrounding
elements in one or more steps we get the conditions in vector b.

In both of the cases it is possible, that several surrounding elements change in one
step. Of course, the second model fits real life better, although the management of it is
more complicated.

The chance of reaching dangerous conditions can be specified in two models.

2.1 Distance model

We initiate distances in the following manner (our graphs are directed):
a) edge
Let us denote the distance from condition ¢ to condition j with d;_,;. In the simplest
case all of the distances are 1, but usually 0 < d;_,; < oo.
b) way

Going on subsequent edges the distances are summarized, so the distance is additive.

c¢) between two nodes

In this case we have to consider all of the ways connecting these two nodes. Thus,
according to real life for the resultant distance d;; we have d;; <min(d;_,;). The
equality can holds only in degenerated cases, if one of the d;_,;-s is 0 or if all of the
d;_j-s are co. Of course, usually d; ; # d;;.

d) between a node and a set (of nodes)
Similarly, as in point c).

EXAMPLE
Let us assume, that in a whole-type distance model from condition ¢ we can reach 2
dangerous conditions, a; and a, with distances d; := d.,, and d := d,q,, respectively.

System: a; +— ¢ —> as

In this case obviously d., <min(d,, ds), where a symbolizes the resultant danger con-
dition, and d., depends on d; and ds. If e.g. di = oo, then d., = ds. A possible solution
for this problem is the use of the harmonic average, so we get

g - ! (_ dl-d2>
R dy + dy




2.2 Probability model
a) edge

Let us denote the probability of the transition from condition ¢ to condition j with
Pi—j- In the simplest case all of the probabilities are equal, but usually 0 < p;,; < 1.

b) way

Going on subsequent edges the probabilities are multiplied, so the probability is
multiplicative.

¢) between two nodes

In this case for the resultant probability p; ; we have p; ; = > p;—;, with p;; < 1.
Of course, usually p;; # pj;-

d) between a node and a set (of nodes)

Similarly, as in point c).

EXAMPLE
Let us consider a system in the whole-type probability model with conditions ¢y, co
and c3 and the transitions

trans. 1: ¢; — co —> c3
pC1—)02 = 04 pcz—)c:; — 02

trans. 2: ¢; — ¢y — c3

P11—11 = 0.5 p11513=0.1
The probability of transition 1 is

P ey = Perses * Peases = 0.4+ 0.2 = 0.08.

The probability, that from ¢; in at most two steps we arrive in c3 is

pzl,c?) = pc1—>C3 +p61—)62 : pC2—>63 + pcl—ml : pc1—>ce, = 01 + 008 + 005 = 023

2.3 Connections between the distance- and probability models

To avoid the dangerous situations we have to know in every condition, how close the
system will be to the danger after the next step. In real life usually we know only the
probability of a transition between conditions, the distance is unknown. Thus, it is useful
to find a connection between the two models, and for us now it is more important the
transition, which makes distance from probability.

So we are looking for a function y : (0,1] — Rg, which has the following properties:

(i) continuous,

(ii) strictly monotonously decreasing,

p1 < p2 = p(p1) > p(p2),



(i)
p(1) =0 and lim p(p) = oo,

(iv)

p(p1 - p2) = (1) + p(p2),

(v) for paralell ways we have
pu(p1 + p2) = p(pr) O p(p),
where 11 is a paralell composition operator.

Considering properties (i)—(iii) we have more different function-candidates, e.g.

dz’—>j ~

T 1
— 1 or ctg (pi_,j . 5) or log = —logpi;j.

Di—j Di—j

However, from property (iv), which can be rewritten in the form
dik = dij + dj

follows, that the solution can only be some kind of logarithmic function ([3]).

EXAMPLE
Let us investigate the problem with the candidate d;,; ~ 1% — 1. In this case we

i—j
search the solution in the form d;_,; = c¢- (]% — 1) +d. From property (iv) the following
i—j
equality holds:

1 1 1
()i () e (1)
Pi—j Dj—k Pi—j - Pj—k

from which with simple transformations

c c
+ —2c+2d=————c+d,
Di—j Pj—k Pisj Dj—k
CP;—sj + CD; c
Pinj T Pimk (g C
Di—j - Dj—k Disj - Pj—k

Thus, we are not able to choose ¢ and d independently from p;_,; and p;_,, so this function
is not appropriate.

So for our function d;_,; ~ log zﬁ = —logp;,;. Knowing that 0 < p;_,; < 1, we have
oo > —logp;—,; > 0. Obviously

- 10gpi—>j - Ingj—ﬂc = — log(pi—>j 'pj—ﬂc)a

and assuming the form c¢(—logp;_,;) + d we can choose d = 0. The base of the logarithm
can be an arbitrary number a, with a > 1 from property (ii).

Thus, we have the desired connection between the two models. We can specify the
distance from the danger (starting from the probability model) in the following manner:



a) Starting from a given condition we specify the probability of reaching the danger(ous
conditions).

b) Using the logarithmics proportionality we change to the distance model, getting so
the distance from the danger (finally, we apply a constant multiplier if needed).

EXAMPLE

Let us assume, that in a whole-type probability model from a given condition ¢; we
can go directly into three conditions, from which two are dangerous (a; and ay). How far
are we from the danger?

System:

Cop <— €1 ——ap

3

C2

where pe, e, = 0.85, peysa; = 0.1, Deya, = 0.05. Then pg,, = 0.1 +0.05 = 0.15,
dg» = —10g0.15. Applying a probability estimate

0.85* ~ 0.5220 > 0.5 > 0.85° ~ 0.4437,

i.e. the system runs into danger in 4 — 5 steps, prospectively. Since —In0.15 ~ 1.8971,
using the function In it is suitable to apply a constant multiplier ¢ = 2 to get the correct
distance.

Let us denote the inverse of function p with 7 : R — [0,1]. Then 7 assures way
through from distance model to probability model. Its required properties can be written
similarly, as those of function u:

(i) continuous,
(ii) strictly monotonously decreasing,
di < dy = 7w(dy) > 7w(da),
(iii)
7(0) =1 and lim 7 (d) =0,

d—o0

(iv)
7(dy + dg) = w(dy) - 7(dy),

(v) for paralell ways we have

7T(d1 Hdg) = 7T(d1) + 7T(d2).

Similarly as above it can be proved, that 7 is some kind of exponential function.
Usually it can be written in the form a~¢, where a > 1 from property (ii).



3 Problems with operator II

From property (iv) of functions p and 7 we have to specify operator II so, that it has to
satisfy the following two equalities:

p1+po = m(u(pr) I p(p2)) and
di I dy = p(m(dy) + m(ds)).

Above we have applied the harmonic average to ”produce” operator I, but — as it will
be presented below — we are not able to fit it exactly to these requirements. From the
definitions of functions p and 7 follows

d, 1T dy = —log,(a~% 4+ a=%®),

so we would need

dl * d2 —d —d
= -1 ! 2).
4T d; og,(a " +a )
Choosing d; = dy # 0 we get
d
51 = _loga(2a dl)a

with the obligation, that this must be held for all d;. This is clearly not possible.

Thus, we have “two different” operators II. Using the harmonic average we get only
an approach. The result is exact if one of the distances d; and d, is 0o, in other cases
there is an error-term. However, this approach is well useable, because of its simplicity.
But, by an exact transition from probability model to distance model, we have to use the
logarithmic formula for operator I1.
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