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Abstract

The upsetting of compact and ring-shaped work pieces is a well-known problem
of plastic forming. Depending on the conditions of friction a work piece becomes
bilge during upsetting. This paper demonstrates the mathematical modeling of
material flow with respect to the coefficient of friction. In the presented solution
the grade of bilge depends on a free parameter of the velocity field. The best value
of this free parameter can be determined by minimization of the power requirement
for the forming. By using the applied method the actual deformation of the work
piece can be determined with good accuracy.
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1 Introduction

The profile of the work piece was found to be approximately parabolic both on the basis
of experimental results (2, 3, 4, 5] and calculations using finite element method [6]. The
case of homogeneous deformations, where the velocity field is such that no bilge occurs,
has been theoretically described in [2, 3]. Velocity fields resulting in bilge work piece have
also been developed, see e.g. However these papers do not take the friction coefficient into
account, and are not suitable for the simulation of material flow as pointed out in [7].

2 Determination of the velocity field

The scheme of upsetting between parallel plates is shown in Fig. 1.
The points of the deformity zone can be given in a cylindrical system of coordinates
by the points (r, z), where z € (0,h), r € (0, f(2)) (see Fig. 1.). We denote the velocity
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Figure 1: Work piece before and after upsetting

field by w(r, z) = [w,(r, z), w,(z)]. The components of w can be determined by using the
following model assumptions:

1. The material is incompressible.

2. The deformation is axisymmetric, that is

w,(0,2) =0, for all z (1)

3.The z component of velocity at the contact of the piece and the plates is as follows:

w,(0) =0, w,(h) = —vy (2)

4. At z = h/2, w, has a point of inflexion, that is, the deformation velocity € has an
extremum at this point.

5. At z = h/2 the radial velocity component w, has a maximum when the work piece
has a bilge form.

6. The upset material is homogenous and isotropic.

7. The z-component of velocity can be written in the form of

wy(2)=a-2>+b-2>+c-z+d (3)

because this function is the simplest assimetric one to describe the vwlocity field of
the deformation of the work piece. Here a, b, ¢ and d are provisionally unknowns to be
determined.

From Assumption 3. we get that

d=0 (4)
a-h*+b-h*+c-h=—v (5)
From Assumption 4.:
0%w,
92 = 3ah+2b=0 (6)

From equations (4, 5, 6), the values of a and b can be determined, whence:

3 2
w,(z) =2 (ch —;:0)2 — 3(Ch -;2“0)2 +cz (7)




Assumption 1. imj;ies that the velocity field is divergence free:

. ow, w, Ow,
€i =

8r+r+82

=0 8)

By substituting the expression of w,(z) into his equation, for the component of w,(r, z)
we obtain first-order differential equation, that contains z as a parameter. Condition 2.
can be regarded as an initial condition for this equation. So the problem given by formulas
(8) and (1) can be solved uniquely for every z. It is easy to see that the solution is as
follows:

rz’c rz%vg rze _rzvy 1

wy(r,z) = =3 2 -3 = +37+3h2 —5re (9)
where c is a provisionally arbitrary constant to be determined.
Introducing the nondimensional parameter £ by

h
k=—c— 10
(10)

Equations (7,9) can be rewritten as:

_2 2 2 2 o i 2

w,(z) = 2(—22°kvo + 22%v9 + 3},:3kvoh 3zvoh — kvgh?) a1

1 7(=62"kvo + 62°vp + 62kvoh — 6zuph — kvoh?)
13

wy(z,1) = —
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Figure 2: Radial component of the velocity at different values of k (vo = 1, h = 5.3, r = 8)

In the above example, at £ = 1, the work piece remains cylindrical, while at £ = 0.6
gets bilge and at £ = 1.4 the mantle surface of the piece becomes concave. In case of
convex shape, at z = h/2, the deformation velocity €, has a maximum, that is, w,(z) is
steepest in the point of inflexion. (Fig.3).
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Figure 3: Axial component of velocity at different values of k (vo =1, h = 5.3, r = 8)

In case k = 1 equations (11 and 12) gives the typical forms of homogenous deforma-
tions, which is well-known, see e.g. [2, 3]:

w,(z) = — % (13)
w(r) =5 0 (14)

The exact value of k£ can be determined by minimization the power requirement of the
forming.
3 The neccessary power of forming
The power requirement of forming is composed as a sum of two components:
P(k) = Pia(k) + Py (k) (15)

where P4 is the pure power requirement of forming, while P; is the friction power which
arises between the contact surfaces of the piece and the pressure plates.
Calculation of components see [3] for details:

e P, is the power of pure deformation:
Pu= [ ksgedv
v

where £y is the forming strength of the material and &, is the comparative deforma-
tion velocity.



e P is the friction power:
P, = /Aukf\vreﬂ dA

assuming the 7 = uo, ~ pk; which is the Coulomb friction. The |v,¢| is the relative
displacement of the piece and the die at the contacting surfaces.

In details, with considering deformation strength at the mean value:

_h )
Py = 27ka/ / Eordrdz (16)
2=0Jr=0

where £, comparative deformation velocity can be computed from deformation velocity
components €;;. In case of axisymmetric piece we getget:

2 2
Ee = \/g(éijéij) = \/g (€7 + €2 + €4 + 2¢2,) (17)

The values of €;; deformation velocity components are as follows:

(Wi + wjz) (18)

DN | =

5ij =

Taking into account that the piece is in contact with the die in two sides, and, |v,¢| =
wy(r, h) = w,(r,0), the friction power can be expressed as follows:

__[R
P, =2P, = 47r,ukf/ rw,dr (19)
0
For the sake of simplicity we perform the calculations for solid cylindrical pieces at £ = 1.

A similar example solution is available in [8].
Equation (18) takes the following simple scalar form:

€ 9z  h (20)

é, = 65’ %U—; (21)
Ers +% (a;;,, + a§2> (23)
ére =0, €o, =10

The value of €, comparative deformaition velocity can be expressed from (20, 21, 22, 23)
as:

) 2 . ) . . v
€e = \/g (62462 462 4 22) = EO (24)
From equations (5, 6, 7), we obtain: &, + &, + g = 0, so the introduced velocity field

satisfies the condition of incompressibility.



The comparative deformation velocity come the components of power, can be ex-
pressed in the following form:

,d—27rkf/ / —TdT’dZ—RZﬂ'k_fUO (25)
z2=0Jr=

1 2 muksR®
P, _mkf/ T_@d _5@ (26)

The total power P can be determined from the velocity vy and the mean force F,
acting on contact surface.

P = FUO (27)
So the power requirement of forming is:
Enl Pid + Ps 7. ,uR
F="2""°—FR? (1 —) 28
" {1+~ (28)

Equation (28) can be derived also by the average stress method, and is known as
Siebel-formula (see [2, 3]).

If k # 1, the velocity field changes according to the actual value of k. Best value of k&
bz the upper bound method minimiyes the following function.

P(k) = Pia(k) + Ps(k) (29)

In the case of £ # 1 the exprressions for the power are more complicated, because
initial conditions (11, 12) are also more complicated, and

. ow, 8wz
Erz = ( P ) # 0.

Calculations were performed by using mathematical software MapleV (see [9]), see also
[1] for a similar industrial applications.

4 The character of bilge in the model applied

If £ # 0, for calculation of ideal and friction power, bilge character also should be taken
into account. For the boundary of integration (relation (16)) and for definition of the
radius R of friction surface (relation (26)), the function r = f(z), describing the instanta-
neous bilge form, is necessary. It makes the exact definition of the function more difficult
because that it depends on time also, that is 7 = f(z,t). Considering the displacement of
a point of the function under an elementary dt period, the following equations hold:

[z +w,(2)dt, t +dt) = f(z,t) + w.(r = f(z,1),2)dt (30)

Expanding the left-hand in terms of Taylr series, we obtain a differential equation which
describes the the change of the curve in time:

0f(z,1) 0f(z,1)
0z ot

wz(z) + = wr(r = f(Z,t), Z) (31)



If the curvature of the surface is small enough, the first term of the left-hand side is
negligible. Assuming that the initial condition is cylindrical (i.e. f(z,t = 0) = constant),
and taking into account that w, is a quadratic function of z, the solution of differential
equation (31) is also quadratic in z. Therefore we approximated the profile curve by a
second degree regression curve. Approximation with a second degree curve is quite usual
(see e.g. [6])).

Table 1. shows the errors of the approximation relative to the average radius at different
values of the coefficient of friction (x) and the upset height (h) see [13]. The initial sizes
of the work piece are: Hy = 5.3mm, Ry = 8mm.

The height of the
upset work piece Relative error
h w=0.05 pw=0.1 pw=0.15 uw=0.25
2.5 — 6.70768E-05 | 1.73792E-04 | 5.35802E-04
3 1.29048E-05 | 5.45206E-05 | 1.24832E-04 | 3.51149E-04
3.5 1.17484E-05 | 3.84116E-05 | 8.03957E-05 | 2.10181E-04
4 8.11444E-06 | 2.23918E-05 | 4.37545E-05 | 1.07693E-04
4.5 3.80848E-06 | 9.30945E-06 | 1.72268E-05 | 4.03032E-05
5 6.40259E-07 | 1.43069E-06 | 2.53462E-06 | 5.68641E-06

Table 1: Relative error of approximation

Table 1. clearly shows that:

e the relative error increases with the coefficient of friction and with the degree of
upsetting;

e for practical purposes, the profile of the work piece can be approximated with a
function of second degree with good accuracy.

Lnowing the profile, one can determine the current volume of the work piece and
the force requirement of the upsetting. The control calculations justified the volume-
consistence with the accuracy of 1-2%.

5 Modeling of the deformation process

For the sake of simplicity in the modeling of the deformation process we assumed that
the coefficient of friction remains constant during the upsetting. Under such a condition
the value of k depends only on the current height of the work piece. If the value of vydt
is small enough, the value of £ can be considered to be constant during upsetting.

For investigation of the forming process, before upsetting at the cross section of the
piece we adopted a set of ponts, and, by using relations (11, 12), we determined the
new position of the adopted point for displacement vydt. Then we considered the new
geometry, and so the value of k¥ was determined. The procedure can be repeated while
we remain in the validity range of the relation (11, 32). At the calculations the value of
vodt was 0.1mm.
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Figure 4: The variation of the specific power requirement of forming depending on the
value of k at different degrees of upsetting. (u = 0.12, Hy = 5.3mm, Ry = 8mm)

The way of calculation can be facilitated by expressing the value of k£ as a function of
the coefficient of friction v and the height h of the piece to be upset. For a given initial
geometry, in a certain range of y friction coefficients and height A, shown on thw Fig. 6., k
can be approximated with acceptable accuracy by regression calculation using a function
of the type:

k= Clh + Cgh + c3 (32)
type of functions.
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Figure 5: The variation of the specific power requirement of forming depending on the
value of k at different values of friction. The upset height of the work piece is A = 3.3mm.
(Hy = 5.3mm, Ry = 8mm)

Applying the above described method we used an AutoLISP program. The program
upsets the piece for the desired degree (to h height) with the given coefficient of friction
and in its final stadium draws the picture of the deformed web of dots and the field of
velocity (Fig. 7 refers). By means of the deformed set of dots the local deformations can
also be studied.



Figure 6: Values of £ as a function of friction coefficient mu and the instantaneous h
height of the piece (Hy = 5.3mm, Ry = 8mm, k& = 1.23602 — 0.977926 — 0.0865165h)

The above modeling makes it possible to investigate the effects of friction coefficient
as well.

We present 3 animations of upsetting with n = 0.06, n = 0.12 and n = 0.24 as an
electronic annex of this paper (see the link).

6 The calculation of velocity field for ring shaped
pieses

The axial component of velocity described by equation (11) can also be applied to ring
shaped pieces. The radial component of velocity we can determine from the following
initial condition for the differential equation (8) is

w,(Rs, 2z) =0, for all z

, where Ry is the radius of the cylindrical surface separating material lowing inwards and
outwards [10].

When we already know the actual R, value, the displacement of any point of the
workpiece can be determined with the help of equation (3). The value of R, can be
expressed by the friction factor and the actual height of the workpiece (see [11, 12]).

R, = au’h* (33)

The values a, b, ¢ in (33) at certain initial geometry and a friction factor nu can be
found in the literature (see [12] for details).
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Figure 8: Effects of friction coefficients (Hy = 5.3mm, Ry = 8mm, h = 2.6mm)

In the case of ring shaped pieces the radial velocity component can be obtained by
solving the following differential equation:

wy(r,z) = (—6r22%kvy + 6r°2%0g + 6r2zkvgh — 6r2zvgh — r’kugh?  (34)

rh?
+ 6R22%kvy — 6R22%* vy — 6R2zkvoh + 6R2zv0h — R%kvgh?)

Fig. 9 shows some rings with different friction coefficients.

We present 3 animations of ring shape upsetting with » = 0.06, n = 0.12 and n =
0.20.

As far as we know, investigation of deformation during upsetting between parallel
pressure plates has not been carried out followed the process by animation.
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