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Abstract

The upsetting of compact and ring-shaped work pieces is a well-known problem of
plastic forming. Depending on the conditions of friction a work piece becomes bilge dur-
ing upsetting. This paper demonstrates the mathematical modeling of material flow with
respect to the coefficient of friction. In the presented solution the grade of bilge depends
on a free parameter of the velocity field. The best value of this free parameter can be de-
termined by minimization of the power requirement for the forming. By using the applied
method the actual deformation of the work piece can be determined with good accuracy.

Keywords: metal forming, modeling, upsetting.

1 Introduction

The profile of the work piece was found to be approximately parabolic both on the basis of
experimental results [2, 3, 4, 5] and calculations using finite element method [6]. The case
of homogeneous deformations, where the velocity field is such that no bilge occurs, has been
theoretically described in [2, 3]. Velocity fields resulting in bilge work piece have also been
developed, see e.g. However these papers do not take the friction coefficient into account, and
are not suitable for the simulation of material flow as pointed out in [7].

2 Determination of the velocity field

The scheme of upsetting between parallel plates is shown in Fig.1.
The points of the deformity zone can be given in a cylindrical system of coordinates by the

points(r, z), wherez ∈ (0, h), r ∈ (0, f(z)) (see Fig. 1.). We denote the velocity field by
w(r, z) = [wr(r, z), wz(z)]. The components ofw can be determined by using the following
model assumptions:

1. The material is incompressible.
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Figure 1: Work piece before and after upsetting

2. The deformation is axisymmetric, that is

wr(0, z) = 0, for all z (1)

3.Thez component of velocity at the contact of the piece and the plates is as follows:

wz(0) = 0, wz(h) = −v0 (2)

4. At z = h/2, wz has a point of inflexion, that is, the deformation velocityε̇ has an
extremum at this point.

5. At z = h/2 the radial velocity componentwr has a maximum when the work piece has a
bilge form.

6. The upset material is homogenous and isotropic.
7. Thez-component of velocity can be written in the form of

wz(z) = a · z3 + b · z2 + c · z + d (3)

because this function is the simplest assimetric one to describe the vwlocity field of the
deformation of the work piece. Herea, b, c andd are provisionally unknowns to be determined.

From Assumption 3. we get that
d = 0 (4)

a · h3 + b · h2 + c · h = −v0 (5)

From Assumption 4.:

∂2wz
∂z2

= 3ah+ 2b = 0 (6)

From equations (4, 5, 6), the values ofa andb can be determined, whence:

wz(z) = 2
(ch+ v0)z3

h3
− 3

(ch+ v0)z2

h2
+ cz (7)

Assumption 1. im;ies that the velocity field is divergence free:

ε̇ii =
∂wr
∂r

+
wr
r

+
∂wz
∂z

= 0 (8)
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By substituting the expression ofwz(z) into his equation, for the component ofwz(r, z)
we obtain first-order differential equation, that containsz as a parameter. Condition 2. can be
regarded as an initial condition for this equation. So the problem given by formulas (8) and (1)
can be solved uniquely for everyz. It is easy to see that the solution is as follows:

wr(r, z) = −3
rz2c

h2
− 3

rz2v0

h3
+ 3

rzc

h
+ 3

rzv0

h2
− 1

2
rc (9)

wherec is a provisionally arbitrary constant to be determined.
Introducing the nondimensional parameterk by

k = −c h
v0

(10)

Equations (7,9) can be rewritten as:

wz(z) =
z(−2z2kv0 + 2z2v0 + 3zkv0h− 3zv0h− kv0h

2)

h3
(11)

wr(z, r) = − 1

2

r(−6z2kv0 + 6z2v0 + 6zkv0h− 6zv0h− kv0h
2)

h3
(12)

Figure 2: Radial component of the velocity at different values ofk (v0 = 1, h = 5.3, r = 8)

In the above example, atk = 1, the work piece remains cylindrical, while atk = 0.6 gets
bilge and atk = 1.4 the mantle surface of the piece becomes concave. In case of convex shape,
at z = h/2, the deformation velocitẏεz has a maximum, that is,wz(z) is steepest in the point
of inflexion. (Fig.3).

In casek = 1 equations (11 and12) gives the typical forms of homogenous deformations,
which is well-known, see e.g. [2, 3]:

wz(z) = − zv0

h
(13)
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Figure 3: Axial component of velocity at different values ofk (v0 = 1, h = 5.3, r = 8)

wr(r) =
1

2

rv0

h
(14)

The exact value ofk can be determined by minimization the power requirement of the
forming.

3 The neccessary power of forming

The power requirement of forming is composed as a sum of two components:

P (k) = Pid(k) + Ps(k) (15)

wherePid is the pure power requirement of forming, whilePs is the friction power which arises
between the contact surfaces of the piece and the pressure plates.

Calculation of components see [3] for details:

• Pid is the power of pure deformation:

Pid =
∫
V
kf ε̇e dV

wherekf is the forming strength of the material andε̇e is the comparative deformation
velocity.

• Ps is the friction power:

Ps =
∫
A
µkf |vrel| dA

assuming theτ = µσn ≈ µkf which is the Coulomb friction. The|vrel| is the relative
displacement of the piece and the die at the contacting surfaces.
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In details, with considering deformation strength at the mean value:

Pid = 2πkf

∫ h

z=0

∫ f(z)

r=0
ε̇erdrdz (16)

whereε̇e comparative deformation velocity can be computed from deformation velocity com-
ponentsε̇ij. In case of axisymmetric piece we getget:

ε̇e =

√
2

3
(ε̇ij ε̇ij) =

√
2

3
(ε̇2
r + ε̇2

z + ε̇2
Θ + 2ε̇2

rz) (17)

The values oḟεij deformation velocity components are as follows:

ε̇ij =
1

2
(wi,j + wj,i) (18)

Taking into account that the piece is in contact with the die in two sides, and,|vrel| = wr(r, h) =
wr(r, 0), the friction power can be expressed as follows:

Ps = 2Ps1 = 4πµkf

∫ R

0
rwrdr (19)

For the sake of simplicity we perform the calculations for solid cylindrical pieces atk = 1. A
similar example solution is available in [8].

Equation (18) takes the following simple scalar form:

ε̇z =
∂wz
∂z

= − v0

h
(20)

ε̇r =
∂wr
∂r

=
1

2

v0

h
(21)

ε̇Θ =
wr
r

=
1

2

v0

h
(22)

ε̇rz +
1

2

(
∂wr
∂z

+
∂wz
∂r

)
(23)

ε̇rΘ = 0, ε̇Θz = 0

The value ofε̇e comparative deformaition velocity can be expressed from (20, 21, 22, 23) as:

ε̇e =

√
2

3
(ε̇2
r + ε̇2

z + ε̇2
Θ + 2ε̇2

rz) =
v0

h
(24)

From equations (5, 6, 7), we obtain: ε̇z + ε̇r + ε̇Θ = 0, so the introduced velocity field
satisfies the condition of incompressibility.

The comparative deformation velocity come the components of power, can be expressed in
the following form:

Pid = 2πkf

∫ h

z=0

∫ R

r=0

v0

h
r dr dz = R2πkfv0 (25)

Ps = 4πµkf

∫ R

0
r

1

2

rv0

h
dr =

2

3

πµkfR
3v0

h
(26)
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The total powerP can be determined from the velocityv0 and the mean forceF , acting on
contact surface.

P = Fv0 (27)

So the power requirement of forming is:

F =
Pid + Ps

v0

= kfR
2π
(

1 +
2µR

3h

)
(28)

Equation (28) can be derived also by the average stress method, and is known as Siebel-
formula (see [2, 3]).

If k 6= 1, the velocity field changes according to the actual value ofk. Best value ofk bz
the upper bound method minimiyes the following function.

P (k) = Pid(k) + Ps(k) (29)

In the case ofk 6= 1 the exprressions for the power are more complicated, because initial
conditions (11, 12) are also more complicated, and

ε̇rz =
1

2

(
∂wr
∂z

+
∂wz
∂r

)
6= 0.

Calculations were performed by using mathematical software MapleV (see [9]), see also [1] for
a similar industrial applications.

4 The character of bilge in the model applied

If k 6= 0, for calculation of ideal and friction power, bilge character also should be taken into
account. For the boundary of integration (relation (16)) and for definition of the radiusR of
friction surface (relation (26)), the functionr = f(z), describing the instantaneous bilge form,
is necessary. It makes the exact definition of the function more difficult because that it depends
on time also, that isr = f(z, t). Considering the displacement of a point of the function under
an elementarydt period, the following equations hold:

f(z + wz(z)dt, t+ dt) = f(z, t) + wr(r = f(z, t), z)dt (30)

Expanding the left-hand in terms of Taylr series, we obtain a differential equation which de-
scribes the the change of the curve in time:

∂f(z, t)

∂z
· wz(z) +

∂f(z, t)

∂t
= wr(r = f(z, t), z) (31)

If the curvature of the surface is small enough, the first term of the left-hand side is negligible.
Assuming that the initial condition is cylindrical (i.e.f(z, t = 0) = constant), and taking into
account thatwr is a quadratic function ofz, the solution of differential equation (31) is also
quadratic inz. Therefore we approximated the profile curve by a second degree regression
curve. Approximation with a second degree curve is quite usual (see e.g. [6])).

Table 1. shows the errors of the approximation relative to the average radius at different
values of the coefficient of friction (µ) and the upset height (h) see [13]. The initial sizes of the
work piece are:H0 = 5.3mm,R0 = 8mm.

Table 1. clearly shows that:
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The height of the
upset work piece Relative error

h µ = 0.05 µ = 0.1 µ = 0.15 µ = 0.25
2.5 — 6.70768E-05 1.73792E-04 5.35802E-04
3 1.29048E-05 5.45206E-05 1.24832E-04 3.51149E-04

3.5 1.17484E-05 3.84116E-05 8.03957E-05 2.10181E-04
4 8.11444E-06 2.23918E-05 4.37545E-05 1.07693E-04

4.5 3.80848E-06 9.30945E-06 1.72268E-05 4.03032E-05
5 6.40259E-07 1.43069E-06 2.53462E-06 5.68641E-06

Table 1: Relative error of approximation

• the relative error increases with the coefficient of friction and with the degree of upsetting;

• for practical purposes, the profile of the work piece can be approximated with a function
of second degree with good accuracy.

Lnowing the profile, one can determine the current volume of the work piece and the force
requirement of the upsetting. The control calculations justified the volume-consistence with the
accuracy of 1–2%.

5 Modeling of the deformation process

For the sake of simplicity in the modeling of the deformation process we assumed that the
coefficient of friction remains constant during the upsetting. Under such a condition the value
of k depends only on the current height of the work piece. If the value ofv0dt is small enough,
the value ofk can be considered to be constant during upsetting.

For investigation of the forming process, before upsetting at the cross section of the piece
we adopted a set of ponts, and, by using relations (11, 12), we determined the new position
of the adopted point for displacementv0dt. Then we considered the new geometry, and so the
value ofk was determined. The procedure can be repeated while we remain in the validity range
of the relation (11, 32). At the calculations the value ofv0dt was0.1mm.

The way of calculation can be facilitated by expressing the value ofk as a function of the
coefficient of frictionν and the heighth of the piece to be upset. For a given initial geometry,
in a certain range ofµ friction coefficients and heighth, shown on thw Fig. 6.,k can be
approximated with acceptable accuracy by regression calculation using a function of the type:

k = c1µ+ c2h+ c3 (32)

type of functions.
Applying the above described method we used an AutoLISP program. The program upsets

the piece for the desired degree (toh height) with the given coefficient of friction and in its final
stadium draws the picture of the deformed web of dots and the field of velocity (Fig.7 refers).
By means of the deformed set of dots the local deformations can also be studied.

The above modeling makes it possible to investigate the effects of friction coefficient as
well.

We present 3 animations of upsetting withη = 0.06, η = 0.12 andη = 0.24 as an electronic
annex of this paper (see the link).
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Figure 4: The variation of the specific power requirement of forming depending on the value of
k at different degrees of upsetting. (µ = 0.12,H0 = 5.3mm,R0 = 8mm)

Figure 5: The variation of the specific power requirement of forming depending on the value
of k at different values of friction. The upset height of the work piece ish = 3.3mm. (H0 =
5.3mm,R0 = 8mm)

6 The calculation of velocity field for ring shaped pieses

The axial component of velocity described by equation (11) can also be applied to ring shaped
pieces. The radial component of velocity we can determine from the following initial condition
for the differential equation (8) is

wr(Rs, z) = 0, for all z

, whereRs is the radius of the cylindrical surface separating material flowing inwards and
outwards [10].

When we already know the actualRs value, the displacement of any point of the workpiece
can be determined with the help of equation (3). The value ofRs can be expressed by the
friction factor and the actual height of the workpiece (see [11, 12]).

Rs = aµbhc (33)
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Figure 6: Values ofk as a function of friction coefficientmu and the instantaneoush height of
the piece (H0 = 5.3mm,R0 = 8mm,k = 1.23602− 0.977926µ− 0.0865165h)

The valuesa, b, c in (33) at certain initial geometry and a friction factornu can be found in
the literature (see [12] for details).

In the case of ring shaped pieces the radial velocity component can be obtained by solving
the following differential equation:

wr(r, z) = − 1

2rh3
(−6r2z2kv0 + 6r2z2v0 + 6r2zkv0h− 6r2zv0h− r2kv0h

2 (34)

+ 6R2
sz

2kv0 − 6R2
sz

2v0 − 6R2
szkv0h+ 6R2

szv0h−R2
skv0h

2)

Fig. 9 shows some rings with different friction coefficients.
We present 3 animations of ring shape upsetting withη = 0.06, η = 0.12 andη = 0.20.
As far as we know, investigation of deformation during upsetting between parallel pressure

plates has not been carried out followed the process by animation.
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