HEJ, HU ISSN 1418-7108
Manuscript no.: ANM-980205-A
Frontpage previous next

A Circulant Seminorm Representation on the Unit Cube

We give the sparse circulant representation of the $H^{1/2}$ seminorm


\begin{displaymath}
\mid f \mid^2_{H^{1/2}(\partial U)} =
\int_{\partial U} \i...
...\underline y} \Vert^3 }
ds({\underline x}) ds({\underline y})
\end{displaymath} (22)

on the boundary $\partial U$ of the unit cube $U$ (1), where $s$ denote the area on $\partial U$ and


\begin{displaymath}
\Vert{\underline x - \underline y} \Vert =
\sqrt{ (x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2}
\end{displaymath} (23)

is the standard euclidean distance in $R^3$.

Let


\begin{displaymath}
Q_1 = \{ (x,y,z) \mid x=0, \quad 0 \le y \le 1, \quad 0 \le z \le 1 \},
\end{displaymath} (24)


\begin{displaymath}
Q_2 = \{ (x,y,z) \mid 0 \le x \le 1, \quad y = 0, \quad 0 \le z \le 1 \},
\end{displaymath} (25)


\begin{displaymath}
Q_3 = \{ (x,y,z) \mid 0 \le x \le 1, \quad 0 \le y \le 1, \quad z = 0 \},
\end{displaymath} (26)


\begin{displaymath}
Q_4 = \{ (x,y,z) \mid x=1, \quad 0 \le y \le 1, \quad 0 \le z \le 1 \},
\end{displaymath} (27)


\begin{displaymath}
Q_5 = \{ (x,y,z) \mid 0 \le x \le 1, \quad y = 1, \quad 0 \le z \le 1 \},
\end{displaymath} (28)


\begin{displaymath}
Q_6 = \{ (x,y,z) \mid 0 \le x \le 1, \quad 0 \le y \le 1, \quad z = 1 \}
\end{displaymath} (29)

denote the sides of $U$ and let $S_i$ $(i=1,2,3)$ denote the strips


\begin{displaymath}
S_1 = Q_1 \cup Q_2 \cup Q_4 \cup Q_5, \quad
\end{displaymath} (30)


\begin{displaymath}
S_2 = Q_1 \cup Q_3 \cup Q_4 \cup Q_6, \quad
\end{displaymath} (31)


\begin{displaymath}
S_3 = Q_2 \cup Q_3 \cup Q_5 \cup Q_6.
\end{displaymath} (32)

In this case the $H^{1/2}$ seminorm on $\partial U$ can be reduced to a sum of 'partial' seminorms as follows:

Theorem 4.1   Let $f \in H^{1/2}(\partial U)$. Then

\begin{displaymath}
2^{-6} \mid f \mid^2_{H^{1/2}(\partial U)} \le
\end{displaymath}


\begin{displaymath}
\le
\sum_{i = 1}^{3} \int_0^1 \int_0^4 \int_0^4
\frac{\mi...
..._1,x_2) \mid^2}{ \mid x_1 - y_1 \mid_T^2}
dy_1 dx_1 dx_2
\le
\end{displaymath} (33)


\begin{displaymath}
\le 2^{7} \mid f \mid^2_{H^{1/2}(\partial U)}.
\end{displaymath}

where


\begin{displaymath}
\mid x_1 - y_1 \mid_T = \min \{ \mid x_1 - y_1 \mid, 4 - \mid x_1 - y_1 \mid \}
\end{displaymath} (34)

and the functions $g_i$ $(i=1,2,3)$ are defined as follows:


\begin{displaymath}
g_1(x_1,x_2) =
\left\{ \begin{array}{ll}
f(0, 1-x_1, x_2)...
...x_1 \le 4 $}\\
\end{array} \right. ,
\quad 0 \le x_2 \le 1,
\end{displaymath} (35)


\begin{displaymath}
g_2(x_1,x_2) =
\left\{ \begin{array}{ll}
f(0, x_2, 1-x_1 ...
...x_1 \le 4$} \\
\end{array} \right. ,
\quad 0 \le x_2 \le 1,
\end{displaymath} (36)


\begin{displaymath}
g_3(x_1,x_2) =
\left\{ \begin{array}{ll}
f(x_2, 0, 1-x_1 ...
...x_1 \le 4$} \\
\end{array} \right. ,
\quad 0 \le x_2 \le 1.
\end{displaymath} (37)

Proof 4.2   A simple calculation gives


\begin{displaymath}
\mid f \mid^2_{H^{1/2}(\partial U)}
\le
\sum_{i=1}^{3}
\...
...ds({\underline y})
\le
2 \mid f \mid^2_{H^{1/2}(\partial U)}
\end{displaymath} (38)

and


\begin{displaymath}
2^{-2} \int_{S_i} \int_{S_i}
\frac{\mid f({\underline x}) ...
...rline y} \Vert^3 }
ds({\underline x}) ds({\underline y})
\le
\end{displaymath}


\begin{displaymath}
\le
\int_0^4 \int_0^1 \int_0^4 \int_0^1
\frac{\mid g_i(x_...
...T^2 + \mid x_2 - y_2 \mid^2 )^{3/2}}
dy_2 dy_1 dx_2 dx_1
\le
\end{displaymath} (39)


\begin{displaymath}
\le
2^{3/2} \int_{S_i} \int_{S_i}
\frac{\mid f({\underlin...
...t^3 }
ds({\underline x}) ds({\underline y}), \quad (i=1,2,3).
\end{displaymath}

Theorem 2.1 implies that

\begin{displaymath}
2^{-5}
\int_0^4 \int_0^1 \int_0^4 \int_0^1
\frac{\mid g_i...
...T^2 + \mid x_2 - y_2 \mid^2 )^{3/2}}
dy_2 dy_1 dx_2 dx_1
\le
\end{displaymath}


\begin{displaymath}
\le
\int_0^4 \int_0^1 \int_0^1
\frac{\mid g_i(x_1,x_2) - g_i(x_1,y_2) \mid^2}
{ \mid x_2 - y_2 \mid^2}
dy_2 dx_2 dx_1 +
\end{displaymath} (40)


\begin{displaymath}
+ \int_0^1 \int_0^4 \int_0^4
\frac{\mid g_i(x_1,x_2) - g_i(y_1,x_2) \mid^2}
{\mid x_1 - y_1 \mid_T^2}
dy_1 dx_1 dx_2
\le
\end{displaymath}


\begin{displaymath}
\le 2^{4}
\int_0^4 \int_0^1 \int_0^4 \int_0^1
\frac{\mid ...
...2 - y_2 \mid^2 )^{3/2}}
dy_2 dy_1 dx_2 dx_1, \quad (i=1,2,3).
\end{displaymath}

Since

\begin{displaymath}
\sum_{i=1}^{3}
\int_0^4 \int_0^1 \int_0^1
\frac{\mid g_i(...
...x_1,y_2) \mid^2}
{ \mid x_2 - y_2 \mid^2}
dy_2 dx_2 dx_1 \le
\end{displaymath} (41)


\begin{displaymath}
\le
2 \sum_{i=1}^{3}
\int_0^1 \int_0^4 \int_0^4
\frac{\m...
..._i(y_1,x_2) \mid^2}
{\mid x_1 - y_1 \mid_T^2}
dy_1 dx_1 dx_2
\end{displaymath}

summing up the inequalities (38)-(41) the proof is completed.

Assume that $\partial U$ is endowed with a uniform square mesh with a grid size $h$ and $V_h(\partial U)$ denotes the space of piecewise bilinear finite elements corresponding to this discretization. Then if $f \in V_h(\partial U)$ we can apply Theorem 3.1 for the functions $g_i$ $(i=1,2,3)$ in Theorem 4.1. and so the 'partial' seminorms


\begin{displaymath}
\int_0^1 \int_0^4 \int_0^4
\frac{\mid g_i(x_1,x_2) - g_i(y...
...^2}{ \mid x_1 - y_1 \mid_T^2}
dy_1 dx_1 dx_2, \quad (i=1,2,3)
\end{displaymath} (42)

can be substituted by the following sum of the one-dimensional circulant seminorms:


\begin{displaymath}
h\sum_{j=0}^{h^{-1}} \int_0^4 \int_0^4
\frac{\mid g_i(x_1,...
...\mid^2}{ \mid x_1 - y_1 \mid_T^2}
dy_1 dx_1, \quad (i=1,2,3).
\end{displaymath} (43)

Hence using the sparse circulant matrix representation [6] of the one-dimensional seminorm $H^{1/2}$ we can give a sparse matrix representation of the $H^{1/2}$ seminorm in $V_h(\partial U)$ which contains $O(Nlog(N))$ non-zero elements, where $N$ is the number of the unknowns.

Remark 4.3   It is easy to see that the construction given above makes possible the application of the two-dimensional $BPS$ [1] preconditioner to three-dimensional problems. In such a way we get a wire basket type preconditioner $P_{BPS}$ for wich the estimate


\begin{displaymath}\alpha_1 (P_{BPS} \underline f, \underline f) \le \end{displaymath}


\begin{displaymath}
\le
\sum_{i = 1}^{3} \int_0^1 \int_0^4 \int_0^4
\frac{\mi...
..._1,x_2) \mid^2}{ \mid x_1 - y_1 \mid_T^2}
dy_1 dx_1 dx_2
\le
\end{displaymath} (44)


\begin{displaymath}\le \alpha_2 (P_{BPS} \underline f, \underline f) \end{displaymath}

holds, where $\frac{\alpha_2}{\alpha_1} \le C(1+(log(h^{-1}))^2)$ and $C$ is a positive constant independent from the mesh size $h$.

HEJ, HU ISSN 1418-7108
Manuscript no.: ANM-980205-A
Frontpage previous next