HEJ, HU ISSN 1418-7108
Manuscript no.: ANM-980205-A
Frontpage previous next

A Finite Element Representation

Let us assume that the intervals $[0,a]$ and $[0,b]$ are endowed with equidistant meshes corresponding to the grid sizes $h_a$ and $h_b$, respectively and let $N_a= {a}/{h_a}$ and $N_b={b}/{h_b}$. We discretize $Q = [0,a] \times [0,b]$ as a direct product of the discretizations defined on the intervals $[0,a]$ and $[0,b]$. The elements of the piecewise bilinear finite element space $V_h(Q)$ corresponding to this discretization can be expressed as


\begin{displaymath}
g(x_1,x_2) =
\sum_{i=0}^{N_a} \sum_{j=0}^{N_b} g_{ij} \varphi_i(x_1) \psi_j(x_2),
\quad (x_1,x_2) \in Q
\end{displaymath} (14)

where $g_{ij}$ denote the function values at the grid points $(i h_a,j h_b)$ and $\varphi_i$ and $\psi_j$ are the one-dimensional piecewise linear shape funcions corresponding to the discretization of the intervals $[0,a]$, $[0,b]$, respectively.

In this space the 'partial' seminorms $\mid . \mid^2_{H_a^{1/2}(Q)}$ and $\mid . \mid^2_{H_b^{1/2}(Q)}$ can be simplified to a sum of one-dimensinal seminorms:

Theorem 3.1   Let $g \in V_h(Q)$. Then


\begin{displaymath}
2 \mid g \mid^2_{H_a^{1/2}(Q)}
\le h_a \sum_{i=0}^{N_a} \...
...2 -y_2 \mid^2} dy_2 dx_2 \le
12 \mid g \mid^2_{H_a^{1/2}(Q)},
\end{displaymath} (15)

and


\begin{displaymath}
2 \mid g \mid^2_{H_b^{1/2}(Q)}
\le h_b \sum_{j=0}^{N_b} \...
... -y_1 \mid^2} dy_1 dx_1 \le
12 \mid g \mid^2_{H_b^{1/2}(Q)}.
\end{displaymath} (16)

The proof of the theorem is based on the following lemma.

Lemma 3.2  
\begin{displaymath}
2 \int_0^h({c\frac{t}{h}+d({1-\frac{t}{h}})})^2dt
\le h(c^2+d^2) \le
6 \int_0^h({c\frac{t}{h}+d({1-\frac{t}{h}})})^2dt,
\end{displaymath} (17)


\begin{displaymath}\mbox{for all } c,d \in (-\infty,infty) \mbox{ and } h > 0 \end{displaymath}

Proof 3.3   Since


\begin{displaymath}6 \int_0^h({c\frac{t}{h}+d({1-\frac{t}{h}})})^2dt
= h(c^2+d^2+cd)\end{displaymath}

the inequality


\begin{displaymath}\frac{1}{2}(c^2+d^2) \le c^2+d^2+cd \le \frac{3}{2}(c^2+d^2)\end{displaymath}

proves our lemma.

Proof 3.4 (Proof of Theorem 3.1.)   In the case of $g \in V_h(Q)$ for the seminorm $\mid . \mid_{H_a^{1/2}(Q)}$ the following indentities hold:


\begin{displaymath}\mid g \mid^2_{H_a^{1/2}(Q)} = \end{displaymath}


\begin{displaymath}
= \int_0^a \int_0^b \int_0^b
\frac{\mid
\sum_{i=0}^{N_a}\...
...-\psi_j(y_2))
\mid^2}
{\mid x_2 - y_2 \mid^2} dy_2 dx_2 dx_1
\end{displaymath} (18)


\begin{displaymath}= \sum_{i=0}^{N_a-1}
\int_0^b \int_0^b
\frac{1}{\mid x_2 - ...
...hi_i(x_1)
\sum_{j=0}^{N_a}
g_{ij}(\psi_j(x_2)-\psi_j(y_2))
+\end{displaymath}


\begin{displaymath}
+
\varphi_{i+1}(x_1)
\sum_{j=0}^{N_a}
g_{i+1,j}(\psi_j(x_2)-\psi_j(y_2))
\mid^2
dx_1 dy_2 dx_2
\end{displaymath} (19)


\begin{displaymath}= \sum_{i=0}^{N_a-1}
\int_0^b \int_0^b
\frac{1}{\mid x_2 - ...
..._1}{h_a}
\sum_{j=0}^{N_a}
g_{ij}(\psi_j(x_2)-\psi_j(y_2))
+ \end{displaymath}


\begin{displaymath}
+
({1-\frac{x_1}{h_a}})
\sum_{j=0}^{N_a}
g_{i+1,j}(\psi_j(x_2)-\psi_j(y_2))
\mid^2
dx_1 dy_2 dx_2
\end{displaymath} (20)

Using Lemma 3.2 with $t=x_1$, $h=h_a$, $c=\sum_{j=0}^{N_a}g_{ij}(\psi_j(x_2)-\psi_j(y_2))$ and $d=\sum_{j=0}^{N_a}g_{i+1,j}(\psi_j(x_2)-\psi_j(y_2))$ one can get


\begin{displaymath}2\int_{0}^{h_a}
\mid
\frac{x_1}{h_a}
\sum_{j=0}^{N_a}
g_{...
...0}^{N_a}
g_{i+1,j}(\psi_j(x_2)-\psi_j(y_2))
\mid^2
dx_1 \le \end{displaymath}


\begin{displaymath}
\le
h_a({
\mid \sum_{j=0}^{N_a}g_{ij}(\psi_j(x_2)-\psi_j(...
..._{j=0}^{N_a}g_{i+1,j}(\psi_j(x_2)-\psi_j(y_2)) \mid^2
})
\le
\end{displaymath} (21)


\begin{displaymath}\le 6\int_{0}^{h_a}
\mid
\frac{x_1}{h_a}
\sum_{j=0}^{N_a}
...
..._{j=0}^{N_a}
g_{i+1,j}(\psi_j(x_2)-\psi_j(y_2))
\mid^2
dx_1.\end{displaymath}

Consider


\begin{displaymath}\mid \sum_{j=0}^{N_a}g_{ij}(\psi_j(x_2)-\psi_j(y_2)) \mid^2 =
\mid g(i h_a,x_2) - g(i h_a,y_2)\mid^2\end{displaymath}

and summing up (21) for $i$, (20) implies the inequality (15). The inequality (16) can be proved analogously.

HEJ, HU ISSN 1418-7108
Manuscript no.: ANM-980205-A
Frontpage previous next