Submitted to HEJ
Manuscript no.: ANM-010201-A
Articles Frontpage previous next

The Riemann integral

For a bounded function $f$ on a (finite) interval $[a,b]$ and a subdivision $S$ of $[a,b]$ one can define two special stepfunctions: $U$ and $L$ (upper and lower stepfunction) as follows.

Let $S:=[a_{0},\ldots,a_{n}]$. Then for all $i\ (1\leq i\leq n)$ and $x$ satisfying $a_{i - 1}<x\leq a_{i}$ one puts

\begin{displaymath}U(x) = \mbox{sup}(f(y): a_{i - 1}<y\leq a_{i})\end{displaymath}

and

\begin{displaymath}L(x) = \mbox{inf}(f(y): a_{i - 1}<y\leq a_{i}),\end{displaymath}

respectively.

EXAMPLE 2.1. (cf. EXAMPLE 1.4.)

$\scriptstyle>$ f:=x->x*sin(x)^2: n:=10: S:=[seq(1.+2*`i`/n,`i`=0..n)]:

$\scriptstyle>$ integral_plot(f,S,'riemann');

 
Figure 5:
\includegraphics[width=12cm]{int05.ps}

5

By definition the graph of $f$ lies below that of $U$ and above the one of $L$. Hence the area $I$ below the graph of $f$ must satisfy

\begin{displaymath}\mbox{\bf lower}(f,S)\leq I\leq \mbox{\bf upper}(f,S).\end{displaymath}

Here lower (resp. upper) is the area under the graph of $L$ (resp. $U$). In our example it means the values

$\scriptstyle>$ lower(f,S);


\begin{displaymath}
1.992058554
\end{displaymath}

$\scriptstyle>$ upper(f,S);


\begin{displaymath}
2.521327986\end{displaymath}

If we make the subdivision finer and finer the approximation of $I$ by upper and lower should be better and better.

$\scriptstyle>$ n:=25: S:=[seq(1.+2*`i`/n,`i`=0..n)]:

$\scriptstyle>$ integral_plot(f,S,'riemann');

 
Figure 6:
\includegraphics[width=12cm]{int06.ps}

$\scriptstyle>$ lower(f,S);


\begin{displaymath}
2.157692545
\end{displaymath}

$\scriptstyle>$ upper(f,S);


\begin{displaymath}
2.369400318\end{displaymath}

Let us denote the subdivision $S$ devided into $n$ subintervals by $S_n$. Now we must realize that ``the area under the graph of $f$'' has never been properly defined (though it is a very intuitive notion). The notions introduced here, however, give a good opportunity.

Definition:
$f$ is called (Riemann-) integrable if there exists a real number $I$ such that

\begin{displaymath}I=\lim_{n\rightarrow \infty} {\bf lower}(f,S_n) = \lim_{n\rightarrow \infty} {\bf upper}(f,S_n).\end{displaymath}

The number $I$ is called the ``integral of $f$ over $[a,b]$''.

Notations:
$\int_{a}^{b}f(x)\,dx$ commonly or sometimes in text form
int$(f(x),x=a..b)$.



Subsections
Submitted to HEJ
Manuscript no.: ANM-010201-A
Articles Frontpage previous next