HEJ, HU ISSN 1418-7108
Manuscript no.: ANM-981030-A
Frontpage previous next

The mixed variational formulation

We establish a mixed variational formulation of the linear problem in the pair $\left( {\bf Y}, L^2_\star(\Omega) \right)$ of spaces. Let be

\begin{eqnarray*}
{\bf Y}&=& H_0({ \bf rot };\Omega) \cap H(\div ;\Omega), \\...
... \quad \vert\vert.\vert\vert _{\bf M}= \vert\vert.\vert\vert _0
\end{eqnarray*}



where the space ${\bf Y}$ is equipped with the norm $\vert.\vert _{\bf Y}$, cf. (20). Using a trick similar to that in [1] we choose a constant $\rho = { \rm const }> 0$ and define
  
$\displaystyle \hat{a}({\bf u},{\bf v})$ $\textstyle =$ $\displaystyle \int_{\Omega} \nu { \bf rot }{\bf u} \cdot { \bf rot }{\bf v}
+ \rho \div {\bf u} \div {\bf v} \;dx$ (21)
$\displaystyle b({\bf v},\lambda)$ $\textstyle =$ $\displaystyle - \int_{\Omega} \lambda \div {\bf v} \; dx.$ (22)

Then we may write the standard variational formulation:
(VF1) Find a pair $({\bf u},\lambda) \in
{\bf Y}\times L^2_\star(\Omega)$ such that
   
$\displaystyle \hat{a}({\bf u},{\bf v}) + b({\bf v}, \lambda)$ $\textstyle =$ $\displaystyle \langle {\bf f},{\bf v} \rangle
\quad \forall {\bf v} \in {\bf Y},$ (23)
$\displaystyle b({\bf u}, \mu)$ $\textstyle =$ $\displaystyle 0 \quad \forall \mu \in {\bf M}.$ (24)

HEJ, HU ISSN 1418-7108
Manuscript no.: ANM-981030-A
Frontpage previous next