Submitted to HEJ
Manuscript no.: MET-990617-A
Articles Frontpage previous next

The neccessary power of forming

The power requirement of forming is composed as a sum of two components:
 \begin{displaymath}
P(k)=P_{id}(k)+P_s (k)
\end{displaymath} (15)

where $P_{id}$ is the pure power requirement of forming, while $P_s$ is the friction power which arises between the contact surfaces of the piece and the pressure plates. Calculation of components see [3] for details:
  • $P_{id}$ is the power of pure deformation:

    \begin{displaymath}P_{id}=\int_{V} k_f \dot{\varepsilon}_{e}\,dV\end{displaymath}

    where $k_f$ is the forming strength of the material and $\dot{\varepsilon}_{e}$ is the comparative deformation velocity.
  • $P_s$ is the friction power:

    \begin{displaymath}P_s=\int_{A} \mu k_f \vert v_{rel}\vert\, dA\end{displaymath}

    assuming the $\tau=\mu\sigma_n\approx \mu k_f$ which is the Coulomb friction. The $\vert v_{rel}\vert$ is the relative displacement of the piece and the die at the contacting surfaces.
In details, with considering deformation strength at the mean value:
 \begin{displaymath}
P_{id}=2\pi\overline{k_f} \int_{z=0}^{h}\int_{r=0}^{f(z)}
\dot{\varepsilon}_{e}
r dr dz
\end{displaymath} (16)

where $\dot{\varepsilon}_{e}$ comparative deformation velocity can be computed from deformation velocity components $\dot{\varepsilon}_{ij}$. In case of axisymmetric piece we getget:
 \begin{displaymath}
\dot{\varepsilon}_{e}=\sqrt{\frac23(
\dot{\varepsilon}_...
...t{\varepsilon}_{\Theta}^2 +2\dot{\varepsilon}_{rz}^2 \right)}
\end{displaymath} (17)

The values of $\dot{\varepsilon}_{ij}$ deformation velocity components are as follows:
 \begin{displaymath}
\dot{\varepsilon}_{ij}=\frac12\left( w_{i,j} + w_{j,i}\right)
\end{displaymath} (18)

Taking into account that the piece is in contact with the die in two sides, and, $\vert v_{rel}\vert=w_r(r,h)=w_r(r,0)$, the friction power can be expressed as follows:
 \begin{displaymath}
P_s=2 P_{s1}= 4 \pi \mu \overline{k_f} \int_0^R r w_r dr
\end{displaymath} (19)

For the sake of simplicity we perform the calculations for solid cylindrical pieces at $k = 1$. A similar example solution is available in [8]. Equation (18) takes the following simple scalar form:
 \begin{displaymath}
\dot{\varepsilon}_z= \frac{\partial w_z}{\partial z} = -\,\frac{v_0}{h}
\end{displaymath} (20)


 \begin{displaymath}
\dot{\varepsilon}_r= \frac{\partial w_r}{\partial r} = \frac12\,\frac{v_0}{h}
\end{displaymath} (21)


 \begin{displaymath}
\dot{\varepsilon}_{\Theta}= \frac{w_r}{r} = \frac12\,\frac{v_0}{h}
\end{displaymath} (22)


 \begin{displaymath}
\dot{\varepsilon}_{r z}+\frac12\left(
\frac{\partial w_r}{\partial z} +
\frac{\partial w_z}{\partial r} \right)
\end{displaymath} (23)


\begin{displaymath}\dot{\varepsilon}_{r \Theta}=0, \qquad \dot{\varepsilon}_{\Theta z}=0\end{displaymath}

The value of $\dot{\varepsilon}_{e}$ comparative deformaition velocity can be expressed from (20, 21, 22, 23) as:
 \begin{displaymath}
\dot{\varepsilon}_{e}=
\sqrt{\frac23\left(\dot{\varepsi...
...Theta}^2 +2\dot{\varepsilon}_{rz}^2
\right)} = \frac{v_0}{h}
\end{displaymath} (24)

From equations (5, 6, 7), we obtain: $\dot{\varepsilon}_z+\dot{\varepsilon}_r+\dot{\varepsilon}_{\Theta}=0$, so the introduced velocity field satisfies the condition of incompressibility. The comparative deformation velocity come the components of power, can be expressed in the following form:
 \begin{displaymath}
P_{id}=2 \pi \overline{k_f}\int_{z=0}^h \int_{r=0}^R \frac{v_0}{h}\,r\,dr\,dz=
R^2 \pi \overline{k_f} v_0
\end{displaymath} (25)


 \begin{displaymath}
P_s=4 \pi \mu \overline{k_f} \int_0^R r \,\frac12\,\frac{...
...}{h}\,dr =
\frac23\,\frac{\pi \mu \overline{k_f} R^3 v_0}{h}
\end{displaymath} (26)

The total power $P$ can be determined from the velocity $v_0$ and the mean force $\overline{F}$, acting on contact surface.
 \begin{displaymath}
P= \overline{F} v_0
\end{displaymath} (27)

So the power requirement of forming is:
 \begin{displaymath}
\overline{F}=\frac{P_{id}+P_s}{v_0}=
\overline{k_f} R^2 \pi \left(1+\frac{2 \mu R}{3 h} \right)
\end{displaymath} (28)

Equation (28) can be derived also by the average stress method, and is known as Siebel-formula (see [2,3]). If $k\neq1$, the velocity field changes according to the actual value of $k$. Best value of $k$ bz the upper bound method minimiyes the following function.
 \begin{displaymath}
P(k)=P_{id}(k)+P_s(k)
\end{displaymath} (29)

In the case of $k\neq1$ the exprressions for the power are more complicated, because initial conditions (11, 12) are also more complicated, and

\begin{displaymath}\dot{\varepsilon}_{r z}=\frac12\left(\frac{\partial w_r}{\partial z} +
\frac{\partial w_z}{\partial r} \right)\neq 0.\end{displaymath}

Calculations were performed by using mathematical software MapleV (see [9]), see also [1] for a similar industrial applications.
Submitted to HEJ
Manuscript no.: MET-990617-A
Articles Frontpage previous next