HEJ, HU ISSN 1418-7108 Manuscript no.: ANM-980205-A
|
 |
|
|
Supplementary files: (unofficial)
|
On a Circulant Representation of the H^(1/2) Seminorm on Rectangles
B. Kiss
Departement of Mathematics, Széchenyi István College
Hédervári u. 3., H-9026 Gyor, Hungary
bkiss@d7.szif.hu
A. Krebsz
Department of Numerical Analysis, Eötvös Lóránd University
Múzeum krt. 6-8., H-1088 Budapest, Hungary
krebsz@cs.elte.hu
G. Molnárka
Departement of Mathematics, Széchenyi István College
Hédervári u. 3., H-9026 Gyor, Hungary
molnarka@d7.szif.hu
Abstract:
The matrix representations of the  norm are efficient preconditioners
for elliptic problems and boundary integral equations of first kind.
A new circulant sparse matrix representation has been presented for the
 seminorm in the space of bilinear finite elements on a rectangular
shaped surface. The matrix contains only  non-zero elements
where  is the number of unknowns.
Keywords: Elliptic problems, domain decomposition,
preconditioned conjugate gradient method.
| HEJ, HU ISSN 1418-7108 Manuscript no.: ANM-980205-A
|
 |
|